/ Thu Dec 2 08:51:53 2004

C 28 38.2 1.4 8561 3 US-09-112-450-3 Sequence 3, Appli C 29 38.2 1.4 8561 4 US-09-191-211-10 Sequence 3, Appli 30 38.2 1.4 9844 4 US-09-191-211-10 Sequence 10, Appl 30 38.2 1.4 9844 4 US-09-191-211-10 Sequence 10, Appl 31 38 1.4 2007 2 US-08-743-637B-169 Sequence 169, App 33 38 1.4 2007 3 US-08-914-01169 Sequence 169, App 33 38 1.4 2007 3 US-08-940B-169 Sequence 1710, App 33 38 1.4 2007 3 US-08-940B-169 Sequence 1710, App 33 37.8 1.4 4140 3 US-08-944-731-2 Sequence 1710, App 34 37.8 1.4 4920 3 US-08-946-855A-1 Sequence 1710, App 35 37.8 1.4 8920 2 US-08-946-855A-1 Sequence 17, App 37 37.8	38 37.8 1.4 1645976 4 US-09-632-570-1 39 37.4 1.4 2663 1 US-08-166-7438-3 41 37.4 1.4 2663 1 US-08-166-7438-3 41 37.4 1.4 76962 4 US-09-206-763-553-3 42 37.2 1.4 942 4 US-09-270-767-19049 43 37.2 1.4 942 4 US-09-270-767-19049 44 37.2 1.4 1928 4 US-09-674-826B-5 45 36.8 1.3 80246 3 US-09-078-294-4	RESULT 1 US-09-232-160-3 Sequence 3, Application US/09232160 Patent No. 6368794 GENERAL INPORMATION:	A PFULCANT: STEEVE DATHEL APPLICANT: STEEVE DATHEL APPLICANT: SUSAN G. StUART APPLICANT: SUSAN G. StUART APPLICANT: LAURA StUVE TITLE OF INVENTION: DETERTION OF ALTERED EXPRESSION OF GENES REGULATING CELL TITLE OF INVENTION: DETERTION FILE REFERENCE: PA-0003 US CURRENT APPLICATION NUMBER: US/09/232,160 CURRENT FILING DATE: 1999-01.15 CURRENT FILING DATE: 1999-01.15	NUMBER OF SEQ ID NOS: 23 SOFTWARE: PERL Program SEQ ID NO 3 LENGTH: 1853	; TYPE: DNA ; CRCANISM: Homo sapiens ; FEATURE: - INPORMATION: 1283330 11S-09-272-160-3	N NANANANANANANANANANANANANANANANANANAN
GenCore version 5.1.6 Copyright (c) 1993 - 2004 Compugen Ltd. OM nucleic - nucleic search, using sw model Run on: November 29, 2004, 08:42:07 ; Search time 227 Seconds Run on: November 29, 2004, 08:42:07 / Search time 227 Seconds	: US-09-989-920-100 ct score: 2754 nce: 1 gccagaagcagcctcagctta. ng table: IDENTITY_NUC Gapop 10.0 , Gapext 1.0 hed: 824507 segs, 355394441 residues	Total number of Alts satisfying chosen parameters: 1643014 Minimum DB seq length: 0 Maximum DB seq length: 200000000 Post-processing: Minimum Match 0% Maximum Match 100% Listing first 45 summaries	<pre>Database : Issued Patents NA:* 1: /cgn2_6/ptodata/1/ina/5A_COMB.seq:* 2: /cgn2_6/ptodata/1/ina/6A_COMB.seq:* 3: /cgn2_6/ptodata/1/ina/6A_COMB.seq:* 4: /cgn2_6/ptodata/1/ina/6A_COMB.seq:* 5: /cgn2_6/ptodata/1/ina/PCTUS_COMB.seq:* 6: /cgn2_6/ptodata/1/ina/Packfiles1.seq:*</pre>	Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.	summaries Query Match Length DB ID	1 1747.6 63.5 1853 3 US-09-232-160-3 Sequence 3, Appli 2 1.9 6310 3 US-09-880-427-2 Sequence 14, Appl 4 49 1.8 6330 3 US-09-306-538F-2 Sequence 2, Appli 5 49 1.8 19806 4 US-09-706-538F-2 Sequence 3, Appli 5 49 1.8 19806 4 US-09-718-037-3 Sequence 3, Appli 6 49 1.8 19806 4 US-09-718-037-3 Sequence 3, Appli 6 49 1.8 19806 4 US-09-718-037-3 Sequence 3, Appli 7 47 1.7 265 4 US-09-713-0986-1 Sequence 12.137, A 7 41.4 1.5 2104 4 US-09-713-0996-23077 Sequence 12.137, A 7 1.1 1.5 3294 4 US-09-713-0996-11322 Sequence 12.137, A 7 1.1 1.5 3144 US-09-713-0996-11322 Sequence 12.137, A 7 1.4 1.5 1141 US-09-713-0996-113223

us-09-989-920-100.rni

08:51:53 2004

(N

Thu Dec

1413

420

1473

480

540

1653

600

660

720

CCTAGTACCTTGGGGACTGAGGACCTTTTGGCTTCTCTGGAGCCTGCAGCCTCTTCCCA 1713 TGTGTCCAGCTGCTTCCTGCTACAAAGGGGGACTGCTCACAGTGGCCTCAGCTTGGTGG 1773 961 CACTCCAGGGGCAGACAGCAGCCACTCCTTCCTTCCTCGTGAGTAACAGTAGTGGTAA 1020 1021 GCAGCTGGGGGCTAACAGGCTAGGCTTGTGTGTCTGGGCATTTGGTCAGGCTTCTCACTCGA 1080 CTTTCCTTCTTGCCGCCTGCTTCCTGGGGGACCCGCTGGGCCTTTGGTCTGCATC 1533 CCCTGGCCAGGTCCCTCAGGGTTGATGCGTGGAGGAGGACTTTGAGCAGTGGGGGGGCAGC 1593 301 ATGACTTGGTTTGCGCTTGGAGGGGGGGGGGGGGGGGGTTTCGGGGGGGTTTCTGCGTTAAC 360 421 TGCTTCAGCTGCTGCAGAGTCCACCCCGCCCTCGTGGGGAATGCAGAGGCCCTTTG 1081 TCCTCCTAAAGCAATGGGGGGGGCCCCCCACTAGCCCAGTTTTCAGGAAGTCAACTGGGGG 1321 AGCTTTGCGGGGCTTGCTTGGTTAACCACAGAAGGAAGGGGACTGTTGGGGGGCCTC 361 cercentaricaccentercerentercerentercereceaccecenteragericac TGCTTCAGCTGGCTGCTGCAGAGTCCACCCCGGCCTCGTGGTGGGGAATGCAGAGCCCTTTG AGTGGCCTCCTGGCCAGCTCACACTCTTGTCCTGGGAGGGGGCAGCCTGATCTCACCTCCA CTAGTACCTTGGGGACTGAGGACCTTTTGGCTTCTCTGGAGCCTGCAGCCTCTTCCCA TGTGTCCAGCTGCTCTTCCTGCTACAAAGGGGACTGCTCACAGTGGCCTCAGCTTGGTGG TTTTGAGGGGCCGCCCCCGGGCCTCCATAAGGGTATCCTGGGCCTGAGAATTCTGCATC TTTTGAGGGCCCCCCCCGGCCCTCCATAAGGGTATCCTGGGCCTGAGAATTCTGCATC 1894 CCGGCTGTGGCCATCCAGCCCCCTGTGGCTTGTCCAGCCTCTGTGCACCCCCTGGTGTCTT CGGCTGTGGCCATCCAGCCCCCTGTGGCTTGTCCAGCCTCTGTGCACCCCCGGGGTGTCTT TCCTCCCTAAAGCAATGGGGGGGCCCCCACTAGCCCCAGTTTTCAGGAAGTCAACTGGGAG GTTAGATGGGGGCCAGGGTCCCACAGCTACTGATGGCCCGAGGCTAGGTTGAGCTTCCTGG GTTAGATGGGGGCCAGGGTCCCACAGCTACTGATGGCCCGGGGGCTTGAGGCTTCCTGG TETCCAGTCCGGATCCTCCATGCTCTCCAGATAGGTGGGACAAGTTCTTT 1201 TGTCCAGTCCCGGATCCCACTTGCATCTCATGCTCCAGATAGGTGGGGACAAGTTCTTT 1261 rercacastiscredecticrercereadescercartiscredectedererecrescada AAGCTTTGCGGGGCTTGCTTGGTTAACCACAGAAGAGGGGACTGTTTGGGGGTGCCTC TCTGCAGCCTCCCCGTGCTGCTGGTGGAGCAGGTTACTGTGTCTCTCAATGTTCATGTAT TGCCATTGGAGGATGGACGACCTCAAATGGAAGGAGTCCCACGGGAGATGGGTCCGAGGT 2014 GCAGCTGGGGCTAACAGGCTAGGCTTTGTGTTCTGCGCGCATTTGGTCAGCTTCTCACTCGA correctinancacecarcitererererereecteececcecetreeaageri 1474 1594 661 -1774 781 1354 1414 1534 1654 1714 2134 1141 2194 2254 2314 1834 1954 2074 721 106 go q g Q qq 20 Con 10 qo 8 qq 8 ð Ş q DD. ĝ â ą g đ ð à 8 9 8 a ð 8 -00 9 <u>o</u> 8 ୍ବି 8

2013

2073

2133 1140 2193 1200 2253 1260

_	2493 1500	2553 1560	2613 1620	2673 1680	2733 1740		
	2434 TTAAAATGATTTTTTTTTAAGGATGTAACCTCCACACTTTTTTCCCGGATTGGGTGACTCT 2 	2494 TTTCTAAAGGTGGTGGGGGGGTTCGTCGGGGGTGGGTGGG	2554 TGTGAGAGGTCCTGGGGAGGGGGGGGGTTGAGCTCAAGGTTGTCCTACTGCCATGTTTTTG 2 	2614 TACCTGAAATAAAGCATATTTTGCACTTGTTACTGTACCATAGTGCGGACGAGAAGTCTG 2 	2674 TATGTGGGGATCTGGGTTGGGTTAGATGCAAATAAAACTCACATTGFAAGAAAAAAAA 2 	2734 AAAAAAAAAAAAAA 2747 1741 AAAACAAAAGAGA 1754	<pre>SULT 2 -00-232-463-14 Sequence 14, hpplication US/08232463 Fatent No. 5670367 GENERAL INFORMATION: APPLICANT: SCHERINGER, F. APPLICANT: SCHERINGER, F. APPLICANT: SCHERINGER, F.G. APPLICANT: SCHERING, RECOMBINANT FOWLPOX VIRUS NUMMER OF SEQUENCES: 52 ADDRESSEE: F0-10-4 & Lardner S CARESPONDENCE ADDRESS: CARESPONDENCE ADDRESS: ADDRESSEE: F0-10-4 & Lardner S CONTY: AL-ARANTIA STATE: VA CONTY: USA CONTY: USA CONTY</pre>
	vo da	cy Bb	b Q	cy B	oy Db	QV Db	RESULT 2 US - 08 - 232 - 4 Sequence Sequence APPLIC
I	<u> </u>	5 1	<u>с</u> 1	<u>о</u> ц	0 D	<u>о</u> ц	Mail Proc. 2010. The rest of the test of test of the test of the test of test o

1833

780

840

1893

1953

960

900

1320 2373

2313

TELEX: 899149 INFORMATION FOR SEQ ID NO: SEQUENCE CHARACTERISTICS:

LENGTH: 7218 base pairs TYPE: nucleic acid STRANDEDNESS: single

TOPOLOGY: linear IMMEDIATE SOURCE: CLONE: pTZgpt-F1s

1440

2374

è q

2433

1380

2 Page

J Thu Dec 2 08:51:53 2004

4

us-09-989-920-100.rni

.

Matches 91; Conservative 0; Mismatches 70; Indels 0; Gaps 0;	QY 1061 TACTCAATTATTGTATTTTGGATTTTAGAATTTGTGGGAAATTGTTG	Qy 1121 TACGCCAACATATATGATTTGCCTCTTGGCCTGAAAATATTTACCGTCT 1180 Qy 1121 111 111 111 111 111 111 Db 4774 TACCTGATAATATTCATTATTTTGCCTGCCTGGCCTGGC	QY 1181 AGCCGGTTACAGAAAAAGTCTGGTGACTAGGCCAGAGCC 1221 	RESULT 4 US-09-306-538B-2 	; Patent No. 6372463 ; GENERAL INFORMATION: ; APPLICANT Simon Andrag	us P. Juji	n NULTEL AND AND ALCOURS AND AND ASS. The Mutated Proteins, and Uses 09/306,538B	CURRENT FILING DATE: 1999-05-05 NUMBER OF SEQ ID NOS: 5 SEQ ID NO 2 LENGTH: 6330	TIVE: DNA CREATINE: Homo sapiens FEATURE: NAME/KEY: unsure		Query Match 1.8%; Score 49; DB 3; Length 6330; Best Local Similarity 56.5%; Pred. No. 0.0013; Matches 91; Conservative 0; Mismatches 70; Indels 0; Gaps 0;	QY 1061 TACTCAATTATTGAATTTAAAAAATTGTGGAAATTTGTTGCTCT 1120 D	QY 1121 TACGCCAACATATATATTGATTTGCCTCTTGGCTCTGAAAGCCCAAATATTTACCGTCT 1180 D 111	1181 4834	RESULT 5 TIC-AG-TAAA-APA-3	одо	APPLICANT: GONG, FANGcheng et al TITLE OF INVENTION: ISOLATED HUMAN DEHYDROGENASES, NUCLEIC TITLE OF INVENTION: ACLO MOLECULES ENCODING THESE HUMAN DEHYDROGENASES, AND USES	FILE DEFERENCE: CLOOIDS FILE REFERENCE: CLOOIDS CURRENT APPLICATION NUMBER: US/09/740,028A ; CURRENT FILING DATE: 2000-12-20 ; MINNENT OF GED TO NOC.	SOFTMARE: FastSEQ for Windows Version 4.0 5 SOFTMARE: FastSEQ for Windows Version 4.0
US - 08 - 232 - 463 - 14	Query Match 1.9%; Score 52; DB 1; Length 7218; Best Local Similarity 12.2%; Pred. No. 0.00018; Matches 61; Conservative 213; Mismatches 228; Indels 0; Gaps 0;	Qy 1276 CTTTTTTAAAGAATAAAATGACTTGGTTTGGCTTGGAAGCAGGGGAAGCATTCAGATG 1335 Db 1005 CGTTTGCCATACGCTCACCAGAATTAATTCCGAGGCTGCAGGGAGGCAGCTTGCG 1064	QY 1336 AGCGGTTTCTGCATTAACCCTGCCTATCACGCATCTCGTGTCGTGGGCGAGCC 1395 : :::: : :::::::::::::::::::::::::::	QY 1396 CCCTTTGGAAGGTTCTGGTGCTTCAGCTGCTGCAGAGTCCACCCGCGTGGTG 1455 11111 1111 1111 111111111111111111	Qy 1456 GGAATGCAGAGCCTTTGCTTTCTTTTTTTTTTTTCTGGTACCGGCT 1515 Db 1456 111111111111111111111111111111111111	QY 1516 GGGCCTTTGGTCTCCCTGGCCAGGCTCCTCAGGGTTGATGCGTGGAGAAGAACTT 1575 1111111111111111111111111111111111	QY 1576 TGAGCAGTGGCAGCAGCAGCAGCCAGCCAGCCACACACTCTTGTCCTGGGAGGGGC 1635 i i i i i i i i i i i i i i i i i i i	Oy 1636 AGCCTGATCTCACCTAGTACCTTGGGGACTGAGGACTTTTGGCTTCTCGGAG 1695 11 11 111 111 1495 Db 1365 YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY	Oy 1696 CCTGCAAGCCTCTTCCCAGGTGCTGGCTGCTACAAGGGGGCTGCTCACA 1755 Db 1425 YYYYYYYYYYYYYYCTATCTTCTTTATCTTTACTAGTTAGGTAGGTAATTACA 1484	QY 1756 GTGGCCTCAGCTTGGTGGTTTT 1777 1.105 GTGGCCTCAGCTTGGTGGTTTT 1777 1.105 GTGCTCTGGTGTTTTT 1505	TILLS 3	US-09-880-427-2 ; sequence 2, Application US/09880427 ; Patent No. 6358728 ; GENERAL INFORMATION:	APPLICANT: Simon, Andras APPLICANT: Briksson, Ulf APPLICANT: Dryia, Thaddeus P.	APPLICANT: Yanamoto, Hoyuji TITLE OF INVENTION: Mutations in Nucleic Acid Molecules Encoding 11-Cis Retinol TITLE OF INVENTION: Dehydrogenase, The Mutated Proteins, and Uses Thereof FILR REFERENCE: LUD 5601	; CURRENT APPLICATION NUMBER: US/09/880,427 ; CURRENT FILING DATE: 2001-06-13 ; PRIOR APPLICATION NUMBER: US 09/306,538	FKLOK FILING DATE: 1999-US-US NUMBER OF SEQ ID NOS: 5 S SEQ ID NO 2 T.FRACTH: 6330		; NAME/KEY: unsure ; LOCATION: 5357, 5448 ; OTHER INFORMATION: nucleotide not determined US-09-880-427-2	Query Match 1.8%; Score 49; DB 3; Length 6330; Best Local Similarity 56.5%; Pred. No. 0.0013;

.

4) 4

2 08:51:53 2004 Thu Dec

us-09-989-920-100.rni

390653 ATTTGTGTTTTATTAAATCTGTAATTTTTTCCCTGTCTATAAAAATATTTAGATTT 390594 1103 TGGAAATTTGTTTGCTCTTACGCCAACATAATATTTGATTTTGCCTCTTGGCTCTGAAAGC 1162 1142 1082 1163 CCAAAATATTTACCGTCTAGCCCGTTACAGAAAAAGTCTGCTGACTACTGAGCCAGACC 1221 20 İGTAAACIGTIATAAGIACTIGATAATATATATITIGI KÜÜLÜGÜ 80 TTAAAATATTAACTCTCTCTCCCCTTTAAGAAAAAACGTGCTGAACCCCCTGCTCTAGATC 138 APPLICANT: Giordano, J.Y. APPLICANT: Giordano, J.Y. TITLE OF INVENTION: Expressed Sequence Tags and Encoded Human Proteins. FILE REFERENCE: 59.US2.REG CURRENT APPLICATION NUMBER: US/09/513, 999C CURRENT APPLICATION NUMBER: US/09/513, 999C CURRENT APPLICATION NUMBER: US/09/513, 999C FRICK APPLICATION NUMBER: US/09/513, 999C SOFTWARE: Patent DATE: 2000-02-24 PRIOK FILING DATE: 1999-02-26 NUMBER OF SEQ ID NOS: 36681 SOFTWARE: Patent Pm SOFTWARE: Patent Pm SOFTWARE: Patent Pm 1023 TTCTTATTTTAGTAGACATGTATTTACCAAAAATATGTACTCAATTATTGTATTTTGGA 1083 TTTTATCAATTTTAAAATTGTGGAAATTTGCTTTGCTCTTACGCCCAACATAATATTTGATTT Gaps 0; Gaps 1.5%; Score 42.6; DB 4; Length 640681; 59.5%; Pred. No. 3.7; cive 0; Mismatches 49; Indels 0; ö APPLICANT: SHIGENOBU, SHUJI APPLICANT: SHIGENOBU, SHUJI APPLICANT: WATANABE, HIDEMI APPLICANT: WATANABE, HIDEMI APPLICANT: SAKAKI, YOSHIYUKI TITLE OF INVENTION. GENOME DNA OF BACTERIAL SYMBIONT OF APHIDS FILE REFERENCE: 081356/0159 Score 47; DB 4; Length 265; Pred. No. 0.0005; 45; Indels 0; Mismatches CURRENT APPLICATION NUMBER: US/09/790,988 CURRENT FILING DATE: 2001-02-23 PRIOR APPLICATION NUMBER: UP2000-107160 NUMBER OF SEQ ID NOS: 7 SOFTWARE: PATCHIN Ver. 2.1 GENERAL INFORMATION: APPLICANT: Dumas Milne Edwards, J.B. Sequence 1, Application US/09790988 Patent No. 6632935 GENERAL INFORMATION: 1.78; ; OTHER INFORMATION: k=g or t US-09-513-999C-27278 Query Match 1.5 Best Local Similarity 59.5 Matches 72; Conservative 74; Conservative ORGANISM: Homo sapiens NAME/KEY: misc feature ; TYPE: DNA ; ORGANISM: Buchnera sp. US-09-790-988-1 Duclert, A. Query Match Best Local Similarity Matches 74; Conserv 1143 T 1143 640681 US-09-790-988-1/C ŝ 265 APPLICANT: LOCATION: TYPE: DNA SEQ ID NO 1 FEATURE : LENGTH: LENGTH: RESULT 8 S q \hat{o} g q qq \mathcal{S} \mathcal{S} à A PPLICANT: GONG, Fangcheng et al. TITLE OF INVENTION: ISOLATED HUWAN DEHYDROGENASES, NUCLEIC TITLE OF INVENTION: ISOLATED HUWAN DEHYDROGENASES, AND USES TITLE OF INVENTION: THEREOF FILE REFERENCE: CLOOIO54DIV CURRENT APPLICATION NUMBER: US/10/118,037 CURRENT PELLOATION NUMBER: US/10/118,037 FRICE APPLICATION NUMBER: 09/740,028 FRICE APPLICATION NUMBER: 09/740,028 16677 TACAAGCTGATAATGGTTTTTTTTTTTTTAATGGTTACATTGTAAACTGTTATATAG 16736 16737 TACCTGATAATATCATTAATTTTGTTTGTTGCCTGCCATGCTTAAAATATTTAACTCTCT 16796 16736 16796 1120 1180 1180 ö ö 1061 TACTCAATTATTGTATTTTGGATTTTATCAATTTAAAAATTGTGGGAAATTTGTTGGTCT 1120 1121 TACGCCAACATAATATTGATTTTGCCTCTTGGCTCTGAAAGCCCCAAAATATTTACCGTCT 16677 TACAAGCTGATAATGGTTTTTTTTTTTTTTAAATGGTTACATTGTAAACTGTTATATAG 1121 TACGCCAACATAATATTGATTTTGCCTCTTGGCTCTGAAAGCCCAAAATATTTACCGTCT Gaps Gaps :0 ö Query Match 1.8%; Score 49; DB 4; Length 19806; Best Local Similarity 56.5%; Pred. No. 0.0031; Matches 91; Conservative 0; Mismatches 70; Indels DB 4; Length 19806; Query Match 1.8%; Score 49; DB 4; Length 198 Best Local Similarity 56.5%; Pred. No. 0.0031; Matches 91; Conservative 0; Mismatches 70; Indels 16797 Geccertraggagagagagecercercerectederc 16837 16797 GGCCCTTTAAGAAAAAACGTGCTGACCCCTGCTCTAGATC 16837 1181 AGCCCGTTACAGAAAAAGTCTGCTGACTACTGAGCCAGACC 1221 1181 AGCCCGTTACAGAAAAAGTCTGCTGACTACTGAGCCAGACC 1221 0; Mismatches SOFTWARE: FastSEQ for Windows Version 4.0 SEQ ID NO 3 OTHER INFORMATION: n = A, T, C or G Sequence 3, Application US/10118037 Patent No. 6797499 GENERAL INFORMATION: (19806) NAME/KEY: misc_feature LOCATION: (1)...(19806 NUMBER OF SEO ID NOS: 4 , NAME/KEY: misc_feature TYPE: DNA ORGANISM: Homo sapien кезинт 7 US=09-513-999C-27278 TYPE: DNA ORGANISM: Human 19806 LENGTH: 19806 RËSULT 6 US-10-118-037-3 LOCATION: LENGTH : FEATURE ð : A ÅÖ. ad ş ġ qq qa SN 0 ୁନ୍ଦୁ 8 δ

ö

ô

Page

2004
08:51:53
2
Dec
\mathbf{Thu}
4

Ą.

us-09-989-920-100.rni

QY 1161 GCCCAAAATAT 1171 Db 203 GCCTAAACTTT 193	RESULT 11 US-09-513-999C-11322/c Sequence 11322, Application US/09513999C Fatent No. 6783961 GENERAL INFORMATION: APPLICANT: Duclert, A. APPLICANT: Duclert, A. FILE REPREMENT APPLICATION NUMBER: US/09/513,999C CURRENT APPLICATION NUMBER: US/09/513,999C FILE REPREMENT APPLICATION NUMBER: US/09/513,999C CURRENT APPLICATION NUMBER: US/09/513,999C	<pre>presentation provide the second provided by the second by the second provided by the s</pre>	Db 201 ACTGAGGAGCTCGGCCCAGCAGGGGGGGCGCGGGGGGGCGCAGTGGGGGCA 142 Qy 810 AGGGGAAGTTTTCAGGCCTTCATCAAGAGAAACAACTCTCCAGGCGGGGGCCAGTGGGGGCA 869 Db 141 GAGTAATTCAGGCCTTCATCAAGAGAAACCATCCTCAGGCTCGGCAGCGCCTCATC 869 0y 810 GAGGTAATTCCTCAGGGACACCGGGGGAAATCCATCTCCAATCTCCGGCCACTCCTC 820 0y 870 CTGTAATCGGGTGTGTGGGGGGGGCGCGGGGCAGGCAAGGCATGGGCAGGGACTTCCGGCGTTGCGGTGGGCTTGCGGTGGGGTGGGGTGGGGTGGGGTGGGGTGGGGTGGGGTGGGG	RESULT 12 US-09-513-999C-23077 Sequence 23077, Application US/09513999C Sequence 23077, Application US/09513999C GENERAL INPORMATION: APPLICANT: Duclert, A. APPLICANT: Duclert, A. APPLICANT: Duclert, A. APPLICANT: Giordano, J'N. TITLE OF INVENTION: Expressed Sequence Tags and Encoded Human Proteins. Patent No. 6783961 FILE REFERENCE: 59.052.REG CURRENT APPLICATION NUMBER: US/09/513,999C	CURRENT FILING DATE: 2000-02-24 PRIOR APPLICATION NUMBER: US 60/122,487 PRIOR PILING DATE: 1999-02-26 NUMBER OF SEQ ID NOS: 36681 SOFTWARE: Patent.Pm SEQ ID NO 23077 LENCTH: 398 TYPE: DNA CRCANISM: Homo sapiens FRATURE: misc_feature LOCATION: 144
Db 390593 T 390593	RESULT 9 US-09-248-795A-12137 Sequence 12137, Application US/09248796A Fatern No. 6747137 GENERAL INFORMATION: PATILE OF INVENTION: FOR DIAGNOSTICS AND THERAPEUTICS TITLE OF INVENTION: FOR DIAGNOSTICS AND THERAPEUTICS TITLE OF INVENTION: FOR DIAGNOSTICS AND THERAPEUTICS CURRENT APPLICATION NUMBER: US/09/248,796A CURRENT FILING DATE: 1999-02-13 CURRENT FILING DATE: 1999-02-13 FRIOR FILING DATE: 1998-02-13 PRIOR FILING DATE: 1998-02-13 PRIOR APPLICATION NUMBER: US 60/074,725 FRIOR APPLICATION NUMBER: US 60/074,725 FRIOR FILING DATE: 1998-02-13 PRIOR FILING DATE: 1998-08-13 PRIOR FILING DATE: 1998-08-13 PRIOR FILING DATE: 1998-08-13 FRIOR FILING DATE: 1998-08-13 PRIOR APPLICATION NUMBER: US 60/096,409 PRIOR FILING DATE: 1998-08-13 PRIOR APPLICATION NUMBER: US 60/096,409 PRIOR FILING DATE: 1998-08-13 PRIOR APPLICATION NUMBER: US 60/096,409 PRIOR FILING DATE: 1998-08-13 PRIOR FILING DATE: 1998-08-1	Query Match1.5%Score 41.6; DB 4; Length 210;Best Local Similarity67.0%; Pred. No. 0.018;100Matches59; Conservative0; Mismatches29; Indels0;Qy1011 CAAAAAAATTCTTATTTTTAGTAGCATGTATTTACCAAAAATGTACTCAATTA1070Qy1011 CAAAAAAAATATCTAATTTTTAGTAGCATGGTTTTAAGAAAAATGTACTCAAATTA1070Qy1011 CAAAAAAAAATAATCTAAATTTTTAACCAGGGTTTTAAGAAAAAAAA	ល លេក ហ	FILE RFERENCE: 59.US2.REG CURRENT FILING DATE: US/09/513,999C CURRENT FILING DATE: 2000-02-24 PRIOR APPLICATION NUMBER: US 60/122,487 PRIOR FILING DATE: 1999-02-26 NUMBER OF SEQ ID NOS: 36681 SOFTWARE: Patent.pm SEQ ID NO 10733 LENGTH: 329 TYPE: DNA ORGANISM: HOMO SADIENS US-09-513-999C-10733	Query Match1.5%Score 41.4;DB 4;Length 329;Best Local Similarity62.6%;Pred. No. 0.03;46;Indels3;Gaps1;Matches82;Conservative0;Mismatches46;Indels3;Gaps1;Oy1044TATTACCAAAAATAGTATTATGATTATGATTTATCAATTAAAAATGT110311

2 08:51:53 2004 Thu Dec

us-09-989-920-100.rni

ം

GENERAL INFORMATION: APPLICANT: Keith Weinstock et al TITLE OF INVENTION: NUCLEIC ACID AND AMINO ACID SEQUENCES RELATING TO CANDIDA ADE TITLE OF INVENTION: FOR DIAGNOSTICS AND THERAPEUTICS FILE REFERENCE: 107196.132 473396 TAAAAGTGTTCCTAAATTATGAAATAATTTTTAAAAATTAACATTTTAACAAATTAGAAA 473455° 1040 CATGTATTTACCAAAAATATGTACTCAATTATTGTATTTTGGATTTTATCAATTTAAAAA 1099 1034 Page 0; Gaps Gaps Length 640681; .: 0 1.4%; Score 39.6; DB 4; Length 1107; llarity 52.4%; Pred. No. 0.26; Conservative 0; Mismatches 79; Indels 0 APPLICANT: HATTORI, MASAHIRA APPLICANT: SAKAKI, YOSHIYUKI TITLE OF INVENTION: GENOME DNA OF BACTERIAL SYMBIONT OF APHIDS Score 40.4; DB 4; Length 6 Pred. No. 17; 0; Mismatches 71; Indels 473456 rcagraarrarcrirtrorrcriftaaaraa 473489 1100 TTGTGGAAATTTGTTTGCTCTTACGCCAACATAA 1133 CURRENT APPLICATION NUMBER: US/09/248,796A CURRENT FILING DATE: 1999-02-12 FRIOR APPLICATION NUMBER: US 60/074,725 PRIOR FILING DATE: 1998-02-13 PRIOR APPLICATION NUMBER: US 60/096,409 PRIOR APPLICATION NUMBER: US 60/096,409 PRIOR APPLICATION NUMBER: US 60/096,409 NUMBER OF SEQ ID NOS: 28208 FILE REFERENCE: 081356/0159 CURRENT APPLICATION NUMBER: US/09/790,988 CURRENT FILING DATE: 2001-02-23 CURRENT FILING DATE: 2001-02-23 PRIOR APPLICATION NUMBER: JP2000-107160 PRIOR FILING DATE: 2000-04-07 US-09-248-796A-8906/c ; Sequence 8906, Application US/09248796A ; Patent No. 6747137 Sequence I, Application US/09790988 Patent No. 6532333 GENERAL INFORMATION: GENERAL INFORMATION: APPLICANT: SHIGENOBU, SHUJI Query Match 1.5%; Best Local Similarity 53.9%; Matches 83; Conservative C HIDEMI SOFTWARE: Patentin Ver. 2.1 SEQ ID NO 1 Candida albicans ::: ::::| 413 WYWKMDMDWBG 423 ; TYPE: DNA ; ORGANISM: Buchnera sp. US-09-790-988-1 WATANABE, NUMBER OF SEQ ID NOS: Best Local Similarity Matches 87; Conserv US-09-248-796A-8906 LENGTH: 640681 1107 RESULT 14 US-09-790-988-1 SEQ ID NO 8906 APPLICANT: TYPE: DNA ORGANISM: Query Match LENGTH: RESULT 15 g å S g PD DD 8 8 δ q ; 0 1131 TAATATTGATTTTGCCTCTTGGCTCTGAAGCCCCAAAATATTTTACCGTCTGCCCGTTAC 1190 ö 1205 GACTACTGAGCCAGACCTCCATTACCTCCATCCTGTTGGATTATTATAAGAAAGCCTCA 1264 1265 GACAGTAAGGGCTTTTTTAAAAGAATAAAATGACTTGGTTTGCGCTTGGAAGGCAGGGGAA 1324 1025 CTTATTTTTGGTAGACATGTATTTACCAAAAATATGTACTCAATTATTGTATTTTGGATT 1084 1085 TTATCAATTTAAAAATTGTGGAAATTTGTTTGCTCTTACGCCAACATAATATTGATTTTG 1144 1145 CCTCTTGGCTCTGAAAGCCCCAAAATATTTACCGTCTAGCCCGTTACAGAAAAGTCTGCT 1204 197 TAGTTATGACAGAACCTCTATGGCCACAAAGTTTAAAATATTTACTATCTTGCTATTTAC 256 53 MSKSRKWTWARMYCKYRRWYNKSRWWKGWYKKWYBCANNTSBRYHARMKUCKYRRWYNNKSRWWYKGWYKKWYBCANNTSBRYHARWKTAYBM 112 113 TMTNKWGKTGWRHRYWRWRAMBDTVDHHYVTAMNNAWTTMCMMDKDDKRTRWWKKONNA 172 293 KYWGWNRABVNSTCTTWKSKTTKVRTSCWANNCRAGDANKDHKWWKWSAAMGVYWNNNN 352 Gaps 0; Gaps APPLICANT: The University of British Columbia TITLE OF INVENTION: Regulation of Embryonic Transcription in Plants FILE REFERENCE: 4810-58741 CURRENT APPLICATION NUMBER: US/09/806,708B CURRENT APPLICATION NUMBER: US/09/806,708B CURRENT FILING DATE: 2001-04-03 FRIOR APPLICATION NUMBER: US 60/147,133 REIOR APPLICATION NUMBER: US 60/147,133 REIOR APPLICATION NOMBER: US 60/147,133 REIOR APPLICATION NUMBER: US 60/147,133 REIOR SEQ IN NOS: 23 REIOR SEQ IN NOS: 23 SOFTWARE: PatentIn version 3.0 :0 Query Match 1.5%; Score 40.4; DB 4; Length 1141; ,Best Local Similarity 9.4%; Pred. No. 0.15; ,Matches 35; Conservative 167; Mismatches 169; Indels 0 Score 40.8; DB 4; Length 398; Pred. No. 0.052; 0; Mismatches 37; Indels 0 1191 AGAAAAGTCTGCTGACTACTGAGCCAGACCTCCATTACC 1230 257 AGAAAATATTTGCTGACTTCTGCCCTACAGAAACATAAGC 296 Sequence 22, Application US/09806708B Patent No. 6784342 بد OTHER INFORMATION: n=a, g, c or ch 1.5%; 1 Similarity 63.0%; 63; Conservative (TYPE: DNA ORGANISM: Artificial sequence UCS-07HER INFORMATION: m=a or c Query Match Best Local Similarity Matches 63; Conserv W Sequence 22, Applicat F Fatent No. 6784342 GENERAL INFORMATION: RESULT 13 US-09-806-708B-22 LENGTH: 1141 V SEQ ID NO 22 8 <u>a</u>____ δŷ. đ 199 đ ମ୍ ଜୁନ୍ଦୁ ଅନ୍ ð d d ð ::: qq q δ ð δo 6 q ð

ö

ö

218 AFTFCFGAATTAAPATTACFGFTGFTFCFGFTATTATTATTATTATTATTAFFAFTAFTA 159

1325 GCATTCAGATG 1335

-

å

QY	1035	1035 GTAGACATGTATTTACCAAAAATATGTACTCAATTATTGTATTTTTGGATTTTTATCAATTT 1094
dŭ	158	158 TTATTATTATTATTGCAAAAGTCATTATTGCTATTAGAATTCTGTGATTATTATTT 99
QY	1095	1095 AAAAATTGTGGAAATTTGTTTGCTCTTACGCCAACATAATATTGAT 1140
qu	98	98 TGTAATTGATGATTGATGATGTTTGTAATTGTTCATTATTTTTAT 53

Search completed: November 29, 2004, 14:19:17 Job time : 236 secs

.

:

:

s: -- -

na 1960 - Calabora Bra 1965 - Sey rotay

Ì,

n,

.

		onds updates/sec	. 2764	i						e a printed,		ion	Homo. sapi Homo. sapi AGENCOURT AGENCOURT AGENCOURT AGENCOURT AGENCOURT 603041774 01-CF-EN1 UI-CF-EN1 UI-CF-EN1 UI-CF-EN1 0128908.Y w055h01.X w137d01.X w137d01.X w137d01.X UI-CF-FN0 UI-C	1
ġ.		me 8386 Second gnments) .llion cell upd				65645750				chance to have result being I stribution.		bt :	2000 2000 2000 2000 2000 2000 2000 200	
5.1.6 Compugen Lt		; Search tim (without alig 11966.971 Mil	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 5 5 5	esidues	eters:				dicted by re of the l score di	Ŋ			
cre version 993 - 2004	ig sw model	, 08:42:07	+	ъ	219865908 r	chosen paramete	0	i 10% summaries		results pre to the sco of the tota	SUMMARIE	ID	ACC20554 CD5020554 CD5020554 BU0684754 BU0684754 BU0584754 BU0584754 BU0584754 BU58075123 ACD723979 AL1238751 AL1238751 AL1238751 AL1238753 AL1338751 AL131375 AL131375 AL151375 AL151375 AL151375 AL151375 BE1155 BE11555 BE1155 BE11555 BE11555 BE115555 BE1155555 BE115555555 BE1	2
GenCt (c) 1	usin	2004	0-100	a c	, 18		0000	ch 0% ch 10% st 45		of . gual		DB		ı
ц	earch,	er 29,	6 6	Y NUC	75 segs	atisfying	0 200000	mum Matc mum Matc ing firs	ggb est t : : : : : : : : : : : : : : : : : :	te number han or eo by analy		Length	1046840404040406640000000000000000000000	1
Соругідһ	cleic s	Novemb	- 6 0	DENTI	328228	hits s	length: length:	: Mini Maxi List	1 2 6 4 7 9 7 9 8 7 9 8 7 9 8 7 9 8 7 9 8 7 9 8 7 9 8 7 9 8 7 9 8 7 9 9 7 9	is the ater th rived b	% Ouerv	Match		
	ic - nucl		score:	table:		number of	DB seq DB seq	ocessing		red. No. core gre nd is de		SCOT	00000000000000000000000000000000000000	
	nucle	: uo	tle: rfect	coring	earched	al nu	mum	л <u>а</u> -	base	4 8 8 7 0 1	1		482200846558921098465882610220202020202020202020202020202020202	4
	и МО	Run	Perf	0 0	Sear	Tota	Minimum Maximum	Post	Datab		a a a a a a a a a a a a a a a a a a a	; ;	00 000 0 000000000000000000000000000000)

BQ082334 K-EST0087 BF592110 7004903.x AI455406 tj37h08.x AI455406 tj37h08.x AI421405 tj37h08.x AI421405 tr25e12.x AI421405 tr25e12.x AI241516 7921612.x AI245431 qt52e02.x AI735680 ov13h01.x AI735680 ov13h01.x AI735680 ov13h01.x AI735680 ov13h01.x AI735502 th778610.x AI735502 th778610.x AI855156 t912h10.y AI855156 t912h10.y AI855156 t912h10.y AI855156 t912h10.y AI855156 t912h10.y AI8551507 t178d10.x AI8551507 t178d10.x AI855150 t178d10.x AI855155 t178d10.x AI855155 t178d10.x AI855155 t178d10.x AI855155 t178d10.x AI855155 t178d10.x AI855155 t178d10.x AI855155 t180004.x AI855155 t180004.x AI855155 t180004.x		mRNA linear HTC 04-MAR-2003 mRNA. iata; Vertebrata; Euteleostomi;	nstitutes of Health, Mammalian mics Office, National Cancer .1A03, Bethesda, MD 20892-2590,	<pre>ARK NTH-MGC Project URL: http://mgc.nci.nih.gov Contact: MGC help desk Email: cgapbs-r@mail.nih.gov Tissue Procurement: ATCC CDNA Library Preparation: Life Technologies, Inc. CDNA Library Arrayed by: The I.M.A.G.E. Consortium (LLNL) DNA Sequencing by: Sequencing Group at the Stanford Human Genome DNA Sequencing by: Sequencing Group at the Stanford, CA 94305 Center, Stanford University School of Medicine, Stanford, CA 94305 Meb site: (Dickson, Mark) mcd@paxil.stanford.edu Dickson, M., Schmutz, J., Grimwood, J., Rodriquez, A., and Myers, R. M.</pre>	tribution information can be found /LiML at: http://image.llnl.gov umn: 5 lem: retained intron. choriocarcinoma"	н6 «
BQ BF592113 BF7592113 AL4537146 AL4537146 AL453406 AL341066 AL341066 AL3412402 AL341361 AL7356431 AL7356431 AL735643 AL735643 AL72505156 AL725025156 AL725025156 AL725023135 AL7250233 AL725033 AL725033 AL725033 AL725033 AL725033 AL725033 AL725033 AL72503 AL252075 AL25033 AL252075 AL25033 AL252075 AL25033 AL252075 AL25033 AL252075 AL25033 AL252075 AL25033 AL2503 AL250	ALIGNMENTS	3408 bp 1MAGE:3049181, 8242) Tendata, Cran Chordata, Cran	22) National I , Cancer Genc Drive, Room 1	http://mgc.nc sk .nih.gov .nih.gov .nih.gov .nin.gov by: The T.M.A by: The T.M.A by: The T.M.A http://www.shgc.st Mark) mcd@paxi	<pre>Clone distribution: MGC clone distribution in through the 1.M.A.G.E. Consortiun/LIAU at: ht Series: IRAK Plate: 20 Row: a Column: 5 This clone has the following problem: retaine Location/Qualifiers organism="Homo sapiens" /nol_type="Homo sapiens" /db_tref="taxon:9606" /clone=Tiba=wHAB: /lab_hof="PHAB" /lab_hof="PHAB"</pre>	or: pCMV-SPOR
44444444444444444444444444444444444444		ms, clone I GI:180882 ins (human) ins (human) ins Elecario	1 to 3408) 1.R. mission (03-JAN-20 (03-JAN-20 31 Center	coject URL: GGC help de GGC help de courement : vury Prepara try Prepara viry Arrayed try Arrayed (Dickson,] (Dickson,] (), Schmutz	rribution: e I.M.A.G. has lthe f has lthe f location/Qu organismer (organismer lorger db zrefer (db zrefer (clone riba (lober 1) base cyp (clone liba	/note="Vect
40044704441044440 90.047.03.44.44.404440 10.404404.04.40002400 11.11111111 11.111111111 11.11111111		BC020554 BC020554 BC020554 BC020554.1 GI HTC. HTC. HOmo sapiens Homo sapiens Eukaryoca; Met Manmal., Eith	1 (bases Strausberg Direct Sub Submitted Gene Colle Institute,	NIH-MGC PI Contact: M Email: contact: M Email: contact: M Tissue Pro- contact: bu M Center, Su Contact: M Dickon, M R. M.	Clone dist through th through th Series: If This clone 1	
00000000000000000000000000000000000000		RESULT 1 BC020554 LOCUS LOCUS ACCESSION ACCESSION VERSION KEYWORDS SOURCE SOURCE	REFERENCE AUTHORS TITLE JOURNAL	REMARK COMENT	FEATURES source	ORIGIN

us-09-989-920-100.rst

08:51:54 2004

2

Thu Dec

DB 3; Length 3408; Score 2726.8; Pred. No. 0; 0; Mismatches 99.08; 99.78; Query Match 99.0' Best Local Similarity 99.7' Matches 2731; Conservative н 671 61 731 121 191

GTTFGTACCCTCTTCTGATTGCACCTCCTTCCCATCGCCCCTTAGGGACAGGGCTTGAG 1030 1150 1210 1330 1450 ACAACATCCTCAGCTCCGCACCCTCATCCTGTATCAGCACTTACCGGTGTGGGCGCC 900 1630 ö GAGGAGCCCTGAGGGCAGCAGGGGGCCAGGGGAAGTTTTCAGGCCTTCATCAAAGAGA 1510 420 480 840 730 120 790 180 850 240 910 970 GTTTGTACCCTCTTCTGATTGCCACCTCCTTCCCATCGCCCCTTAGGGACAGGGCTTGAG 360 540 660 720 780 960 CTTCCGCTCGGGTTGCATGCTCGTGTCATCTTACCGGGTCCAGGGTTGCAGGTAGGAAAT 300 60 CCCCAGAGCAGGCAAGGTCTCTAGAGCGGGTCTCCCCACAGACTGGCTTCACACAGGCA CCAGAAGCAGCTCAGCTTGGCAAGGTGGGGGAGGTGGTGCTGTGCCTTCGCATTTGG GGAAAACAGGCTCCCTCGGTAGCTCGATGATCCTCTTTTGATCTTGTGTGACCTCCTGGA GAGTGGATGACGCTGGTGGCCTTAGCTTAGACAGTGTAAATTGCACTGGGCGATGT TCCTCCCTCCCCAATCTATGGGTCACAGCTAACAGATCTGAGGGCCAACTGCTGTGCTAG PTCGCATTTGG GGAAAACAGGCTCCCTCGGTAGCTCGATGATCCTTTTTGATCTTGTGGAGCCTCCTGGA CCCCAGAGGGCAAGGTCTCTAGAGGGGGTCTCCCACACAGACTGGCTTCACACAGGGCA GGCCAGTGAGGGGCTGGGCAGGGCCCCAGGGCCTCCTTGGGACCTGGCGGGGCAGGGGCACCCT GAGAGCTCCTGAAAACCCCCACTTAGCTTCCAGAACCTTCTCTGCAAAAAGCTCCTCCTGGCTT TCCTCCCTCCCCCAAATCTATGGGTCACAGGTCAACAGATCTGAGGGGCAACTGCTGTGCTAG TAAGGTGGGGAAGGACGGTCAGTGCTTGGGCCCAGCTGGCCAGGCGAAA CCAAACCATGTCCCCCAGGGGCCAGAGTGGGAACCTGTCCTCATGCCCTTCGTCCT CCAAACCATGTCCCCCAGGGAAGGGCCCAGAGTGGGAACCTGTCTCTCATGCCTTCGTCCT CTTGTCAGCTAGCATACGGTGGGCCCACCTGGCCCACTGGCTGTTTATGCCACTGATTTA CTTGTCAGCTAGCATACGGTGGGCCCACCTGGCCCACTGGCTGTTTA GAGAGCTCCTGAAACCCCCACTTAGCTTCCAGACCTTTCTGCAAAAGCTCCTCCTGGCTT GAGGAGCCCTGAGGTGGGCAGCAGGGGGCCAGGGGGGAAGTTTTCCAGGCCTTCATCAAGAGA Gaps ö GCCAGAAGCAGCCTCAGCTTGGCAAGGTGTGGAGATGACTGCTGTTCCC' 7; Indels 1031 1331 1451 181 851 241 **11**6 971 361 421 1091 481 1151 601 661 721 1391 781 841 1511 901 1571 961 1631 301 , DD <u>}</u> YO ... අ<u>ට</u> . ́а́ g q qq δ a δ ò δ đ ති δ_{V} å § 8 q 8 qq ð q qa ∂ , QD δ go 8 ١.

AATTCTTATTTTTAGTAGACATGTATTTTACCAAAAATATGTACTCAATTATTGTATTTTTG 1080

1021

8

 1715. GANTTYANGANTTYANAA TYOTOTAAA TYOTOTTYACCONTRACCONTRACCONTRACTORY NAME AND NATIONAL TYOTOTAA NAME NAME NAME NAME NAME NAME NAME NA	1691 1081	ANTICITATTITAGTACATGTATTITACCAAAATAGTACTAATATGTACTAATATGTATTITG AATTCTTATTITAGTAGACAGTGTATTACCAAAAATAGTACTCAATATTGTATTITG GATTTATCAATTTAAAAATTGTGGGAAATTTGGTCTTACGCCAACAACAAAATATTGGT 1 	750 140
		I I TTTATATTATTATTATTATTATATTGTTATTGTTTATTAT	810
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		TITECTICITE CONTRACTOR AND	970
		TGCTGACTACTGAGCCGGGCCTCCATTCCTCCTCCTGTTGGATTATTTAAGGAAGC 12 	260
		CTCAGACAGTAAGGGCTTTTTTAAAAGAATAAAGACTTGGTTTGGGTTTGGAAGGAGG 13 	320 990
dataddari Tokantdaddaring Locan Taketu acti an token and carticla and and and and and and and and and an		GGAAGGATTCAGATGAGGGTTTCTGCATTAACCCTGGCTATCAGGCATCTGGTGTGTCTG	380
Hillight Indext and an intervent of the int		General Lenger Generation Lenger Lenger Lenger Control	440
cccccccrcorregregenanedcaeneccrrrregrrrregregregregregregregregregregr		TETTETTETTETTETTETTETTETTETTETTETTETTET	110
		cocceccrconeeraangeaangeaegeccrtracrtrccrtrcrtecceccrccrgr 	500
		TCCT6666ACCC6CT666CCTT766TCT6CATCCCC766CCA65TCCCTCA666TT6AT6 15	0
		TCCTGGGGACCCGCTGGGCTTTTGGTCTGCATCCCTGGCCAGGTCCCTCGGGGTTGATG 22	Ó
		CGTGGAGAGACTTTGAGCAGTGGTGGGCGGCAGTGGCCTCGGCCAGCTCACACTCT 16 	0 0
	<u> </u>	TGTCCTGGGGGGGGGCGCCTGATCTCCCCCCTGGTGGTACCTTGGGGGCGTGGGGCGCCTT 16	0 0
[]]]][][][][][][][][][][][][][][][][][11 TOTOLOGOAGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	
accedacrescreatesecreaserrateserestratesecseccesesecerec 1900 		TTGGCTTCTCTGGAGGCTGCAGGCTCTTCCCATGTGTGCTGCTGCTGCTGCTAGCAA 24	110
acoscia concrete contract transmission of the second concrete second second concrete second second concrete second		accearchectreacarcacercaeerragernagerragegeeceeeecececeeeeree 1E	006
aradostratecrosococrosocatratecio ceratrosocatrosococrectada 1860 [[]][][][][][][][][][][][][][][][][][]		AGGGGACTCCTCAGCCTCAGCTTGGTGGTTTTTGAGGGGGCCGCCCCCCGGCCCTCC 24	170
TGGAAGGAGTCCCACGGGAGATGGGTCCGGGGTGTGGGCCATCCAGCCCCTGTG 1920 	а а	ATAAGGGTATCCTGGGCCTGAGAATTCTGCATCTGCATTGGGGGATGGACGGCCTCAAA 18 	360 530
HGAMGAGTCCTCGCCCCGCGGGGCCCCGGGCCTGGGCCALCCCCGGCC 2590 HGAMGAGTCCCCCCGCCCCGGGGGCCCCGGGGCCGCCCGGCCCCGGC 2980 GCTTGTCCGCCCTCGGGGCCCCCGGGGGCCCCGGGGGCGGC		TGGAAGGAGTCCCACGGGAGATGGGTCCGGGCGCGCGGCGGCCATCCAGCCCCCTGTG 19	920
GCTTGTCCAGCCTCTGTGCACCCCTGGTGTCTTCACTCCAGGGGCAGCCAGC	rd.	TGGAAGAGTUUTITITITITITITITITITITITITITITITITITI	069
<pre>defTrgTcCadeCTCTrgTacAcCCCTrgGTrgTCTCACGGGGGGGGGGGGGGGGGGGGCAGCTG 2650 CagTTCCTTTCGTGGGGGAGCAGGTGGTGGTGGCGGCGGGGGGCTAACAGGCTTT 2040 [</pre>		GCTTGTCCAGCCTCTGTGCACCCCTGGTGTCTTCACTCCAGGGGGGGG	980
CAGTTCCTTTCTTCGTGAGTACCAGTGATGCAGCTGGGGGCTAACAGGCTTT 2040 		CETTGTTCCAGCCTCTTGTTCTTCTTCTCCCCGGGGGGCGCGCGC	550
CAGTTCCTTCTTCGTGAGTAGCAGTAGTGATAGCAGCTGGGGGCTAACAGGCTTT 2/10 GTGTTCTGCGGATTTGGTCAGCTTCTAACTCGATCCTCCCTAAAGCAATGGGGGAGGGCCC 2100 		Cagttcctttcttcgtgagtaacagtagtggtagcagccgggggggg	040
GTGTTCTGCGCATTTGGTCAGCTTCTCACTCGATCCTCCCTAAGCAAGGCAGGC		CAGTTCCTTTCTTCGTGAGTAACAGTAGTGGTAGCAGCTGGGGGCTAACAGGCCTAGGCTTT_ 2/	110
Partmarring and a string a string a string a string and string a s		<pre>grgrrcrgcgcarrrgcrcagcrrcrcagarccrccaraagcargegegegegegegeccc 21 [</pre>	100 770
		CACTAGE CCAGETETTICAGGA AGTICAACTIGGGAGGETTAGATIGGGGGGCCAGGGTTCCCACAGC 21	160

2

Page

08:51:54 2004 2 Thu Dec ري.

•

Qy 2221 CTCATGATGATGGCCCGAGGCCAG Qy 2221 CTCATGATGGTCCTCAGATAGGT Qy 2221 CTCATGCTCTCAGATAGGT Db 2991 CTCATGCTCTCAGATAGGT Qy 2281 CTCATGGTCGTCGGCTGGGTGGGTG Qy 2281 CCTCATTGCTGGCTGGCTGGGTG Qy 2281 CCTCATTGCTGGCTGGGTGGGTG Db 2951 CCTCATTGCTGGGCTGGGTGGGTGGTGGGTG Qy 2341 CATCATGCTGGGTGGGTGGGTGGTGGTGGTGGTGGTGGGTG			/mol_type="mRNA" /db Xref="taxon:9606"
2221 2891 2881 2281 2951 2951	GTTGAGCTTCCTGGTGCCGGATCCCACTTGCAGAT 2890		/ -] Cna-"TWAGF, 30406456"
2281 2951 2341	IGGGACAAGTTCTTTTGTCACAGTGCTGGCTCTGTCCTGAGG 2280 		/lab_host="http://orgoof /lab_host="httl://orgoof /clone_lib="WIH_MGC_186" /note="organ: Pooled-Skin
2341	CCTCATTGCTGGCTGGGGTGTGCTGCTGGGGAAAGCTTTGCGGGGGGCTTGCTT		(ggccattatggcc); Site 2: oligo-dT primed and direc prepared from a pooled sa meninges, duramatter, pia
Db 3011 CACAGAAGAGAAGGGGGACT	TGTTTGGGGTGCTCTCTGCAGCTCGCGGGAA 2400		and 3' adaptors were used adaptor sequence: 5'-CACG sequence: 5'-ATTCTAGAGGCC (where B = A, C, or G and
2401 GCACGGTTACTGTGTTCTC 2401 GCACGGTTACTGTGTTCTC 3071 GCACGGTTACTGTGTTCTC	TAATGTTCATGTATTTAAAATGATTTCTTTCTAAGATGTA 		insert size 1.47 kb (rang contained inserts by PCR. full-length clones and wa laboratories (Palo Alto,
2461		ORIGIN	Library"
Db 3131 ACCTCCACACTTTCTCCC Ov 25531 ACCTCCACATTCTCCC		Query Match Best Local (Matches 70)	/ Match 25.1%; Score 692; I Local Similarity 98.5%; Pred. No. 8.3 As 709: Conservative 0: Mismatches
3191	GGGTGGTGTGTGGCCTTGGATGGGTCGGGTGGGGTGGGG	δλ	1842 GAGGATGGACAGCCTCAAA
QY 2581 TGAGCTCAAAGTTGTCCTA	ACTGCCATGTTTTTGTACCTGAAATAAAGCATATTTTGCACT 2640	qu	
3251		oy i	
QY 2641 TGTTACTGTACCATAGTGC Db 3311 TGTTACTGTAGTAGTGC	TGTTAATGTAACGATAAGGAGAGAGAGAGTGTATGTGGGAATCGTGGGGGATAAAA 2700 11111111111111111111111111111111111	a ò	61 GGCCATCCAGCCCCCTGTGGGGCTTGTCCAGCCT 1962 GGGCAGAGCAGCCACTGCAGTTCCTTTCTT
QY 2701 TGCAAATAAAACTCACATT	TTTTTAGAAAAAAAAAAA 2738	qu	121 GGGCAGACAGCAGCACCAGCAGCTICCTTICTT
Db 3371 TGCAAATAAAACTCACATT	IIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	SY 1	2022 GGCTAACAGGCTAGGCTTTGTGTTTGTGTTCTGCGCATT 10.10111111111111111111111111111111111
RESULT 2 CD512690 LOCUS CD512690	747 bp mRNA linear EST 06-JUN-2003		
	}		
ACCESSION CD512690 VERSION CD512690.1 GI:314444 KEYWORDS EST.	CD512690 CD512690.1 GI:31444408 EST.	& 8	2142 GGGGCCAGGGTCCCACAGCTACTGATGGCCCGA
SOURCE Homo sapiens (human) ORGANISM Homo sapiens Filearocta Metaroa C	Phordara. Craniara Vortebrata. Euteleostomi.	QY	2202 CCGGATCCCACTTGCAGATCTCATGCTCTCAG
REFERENCE 1 (bases 1 to 747)	Primates; Catarrhini; Hominidae; Homo.	qũ	361 CCGGATCCCACTTGCAGATCTCATGCTCTCAG
AUTHORS NIH-MGC http://mgc.nc TITLE National Institutes c	ci.nih.gov/. of Health, Mammalian Gene Collection (MGC)	ð f	2262 TGCTGGCTCTGTCCTGAGGCCTCATTGCTGGCT
COMMENT Unpublished (1999) COMMENT Contact: Daniela S. (Office of Cancer Genc	u contuctistica (1994) Serhard, Ph.D. Office of Cancer Genomics	an vo	
National Cancer Insti Bldg. 31 Rm10A07 Beth Email: Araphetromail	itute / NIH hesda, MD 20892 hesda, AD 20892	đđ	481 CGGGGCTTGCTTGGTTAACCACAGAAGAAGAAG
Tissue Procurement: I CDNA Library Prepare		σλ	2382 CTCCCCGTGGGTGGGTGGAAGCACGGTTACTGTC
CDNA LIDTATY ATTAYE DNA Sequencing by: ?	d by: The I.M.A.G.E. Consortium (LLNL) Agencourt Bioscience Corporation Word Corporations on ho	<u>a</u>	541 CTCCCGTGCTGGGTGGAAGCGCACGTACTGTGAAGCAGTTACTGT
found through the I.M http://image.llnl.gov	NGC CLORE ALBULINUCION INFORMACIÓN CAN DE M.A.G.E. CONSOTTIUM/LIANL AL: V	6 G	601 ATTCTTTCTAAAGATGTAACCTCCCCCCCCCTT
Plate: NDCM195 row: High quality sequence	d column: 17 e stop: 509.	ov	2502 GGTGGTGGGAGTATCTGTCGGGGGTGGTGGTGG-

2381 1901 1961 2201 2321 г; 2021 2081 2141 recarded contrastic transfer to a transfer of the state o 120 240 360 540 180 60 Contronent treedeant needean concerner and the second seco rerecedecorcreatecacccoregerercractcored The second s 2ACTGCAGTTCCTTTCTTCGTGAGTAACAGTAGTGGTGGCAGCTGG DACTGCAGTTCCTTTCTTCGTGAGTAACAGTAGTGATAGCAGCTGG ACAGCTACTGATGGCCCGAGCCAGGTTGAGGTTGCTGGTGCTGGTGTCCAGT ACAGCTACTGATGGCCCGAGCCAGGTTGAGCTTCCTGGTGTCCAGT .1%; Score 692; DB 6; Length 747; .5%; Pred. No. 8.3e-171; e 0; Mismatches 10; Indels 1; Gaps

2501

660

600

CTGTCGGGGTGGTGG-CCCTTGGATGGGTCAGGTGGGTGGGTGAGA 2560

k .

Thu Dec 2 08:51:54 2004

us-09-989-920-100.rst

Page 4

17

2119 GAAGTCAACTGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	2179 GGTTGAGCTTCCTGGTGCGGGTCCCGGTCCCACTTGCAGTTGGTCTCTGGTTAGG 2238 2111 2111 1111<	Green control of the	1	2479 AGATTGGGTGACTCTTTTCTAAAGGTGGGGGGGGGGGGG	202 GATEGGGTENGGTENGTENTIAL AND	2659 CGGACGAGAAGTCTGTATGTGGGATCTGTGGGTTGGGGTTAGAATGCAAATAAACTCACAT 2718 %	2719 TTGTAAGAAAAAAAAAA 2739 22 TTGTAAGAAAAAAAAAAA 2	BU684754 685 bp mRNA linear EST 07-OCT-2002 UT-CF-ENL-acv-d-09-0-UL 31 UT-CF-ENL Homo sapiens cDNA clone BU684754.1 GI:23538028 BU684754.1 GI:23538028 BU684754.1 GI:23538028 BG684754.1 GI:23538028 BG684754.1 GI:23538028 BG684754.1 GI:23538028 BG684754.1 GI:23538028 BG684754.1 GI:23538028 BG684754.1 GI:23538028 BG684754.1 GI:23538028 BG784754.1 GI:23558 BG784754.1 GI:2558 BG784754.1 GI:25588 BG784754.1 GI:25588	1 (bases 1 to 685) Bonaldo,M.F., Lennon,G. and Soares,M.B. Normalization and subtraction: two approaches to facilitate gene discovery Gencne Res. 6 (9), 791-806 (1996) 9904477	8889548 Contact: McCray, PB McCray Lab University of Iowa 2024 University of Iowa Med Labs, Iowa City, IA 52242, USA 2024 University of Iowa 701: 319 356 4866 Fax: 319 356 7171 Email: paul-mccray@ujowa.edu Tissue Procurement: Dr. M. J. Welsh, University of Iowa
8 S								RESULT 4 BU684754/c Locus DEFINITION ACCESSION VERSION VERSION SOURCE ORGANISM	REFERENCE AUTHORS TITLE JOURNAL MEDLINE	
<u>о а</u>	8882	2 A A A	A A A	ov du vo	dy Qy	DP GA	A A	5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	∝ 	С
	3 7/c CB242367 TON UI-CF-FN0-age-m-22-0-UI.s1 UI-CF-FN0 Homo sapiens CDNA Clone UI-CF-FN0-age-m-22-0-UI 3', mRNA sequence. ON CB242367.1 GI:28364011			MCTay Lab University of Iowa 2024 University of Iowa Med Labs, Iowa City, IA 52242, USA 721: 319 356 4765 Fax: 319 356 7171 Email: paul-mccray@uiowa.edu	CDNA Library preparation: Dr. W. WENTO, DI LUWA CDNA Library preparation: Dr. W. Bento Soares, University of Iowa CDNA Library Arrayed by: Dr. M. Bento Soares, University of Iowa DNA Sequencing by: Dr. M. Bento Soares, University of Iowa Clone Distribution: Researchers may obtain clones from Research Genetics (www.resgen.com) or from Open Biosystems		source 1766 /organism="Homo sapiens" /mol_type="mRNA" /db_treft"taxon:9606	<pre>/tissue type="two-age="curve.rule" /tissue type="twman tung Epithelial cells" /lab_host="DH10B (Life Technologies) (T1 phage resistant)" /clone lib="url-cp-pro" /note="drgan: Lung; Vector: pT713-pac (Pharmacia) with a modified polylinker; Site_1: EcoR I; Site_2: Not I; Url-Cr-Pro" is a subtracted CDNA library derived from two normalized Human lung epithelial cell libraries (EN1 and DU1) The library was subtracted according to according to Bonaldo, hennon and Soares, Genome Research, 6:791-806, 1996. For additional information, contact: bento-scares@ulowa.edu TAG_TISSUE=Human Lung Epithelial Cell Lines untreated LPS fAr to LPS 24M</pre>	TAG_IEB=CI-CF-FN0 TAG_SEQ=CTGCTCAGGT" tch 24.7%; Score 680.4; DB 6; Length 766; al Similarity 97.6%; Pred. No. 9.6e-168;	723; Conservative (999 GTAACAGTAGTGATAGCAGG 999 GTAACAGTAGTGATAGCAGG 736 GTAACAGTAGTGATAGCAGG 059 CAGCTTCTCACTCGATCCT 611 CAGCTTCTCACTCGATCCT 611 CAGCTTCTCACTCGATCCT
	RESULT 3 CB242367/c LOCUS DDEFINITION ACCESSION VENERSION	SOURCE SOURCE CORGANISM REFERENCE	TITLE JOURNAL MEDLINE PUBMED COMMENT			FEATURES	Os.		ORIGIN Query Ma Best Loc	kt ch

40
0
0
2
1:54
ñ.
5
u)
08:
ω
0
2
•••
F.)
Dec
×.
н
Thu
д.
H
-

ċ,

Db265TCATGCCTTCGTCCTGAGGAGCCCTGAGGTGGGGGGGGGG	RESULT 5 BQ953674 BQ953674 DCCUS DEFINITION DEFINITION ACROCUT 8003100 Lupski_sciatic_nerve Homo sapiens CDNA clone NAGES:6196871 5', mRNA sequence. ACCESSION BQ935674.1 G1:22369152 ACCESSION BQ935674.1 G1:22369152 KEYWORD HOMO sapiens (human) ORGANISM HOMO SAPIENS HOMO SA	<pre>cDNA Library Preparation: Life Technologies, Inc. cDNA Library Preparation: Life Technologies, Inc. cDNA Sequencing by: The I.M.A.G.E. Consortium (LLNL) DNA Sequencing by: Agencourt Bioscience Corporation clone distribution: MGC clone distribution information can be found through the I.M.A.G.E. Consortium/LLNL at: http://image.llnl.gov Plate: LLAM13611 row: d column: 08 High quality sequence stop: 600. FEATURES 1.642 Location/Qualities fource //doalities /db Zref="texaon:9606" /db Zref="texaon:9606" /doave="scitation" / db Zref="scitation" /doave="scitation" / doave="scitation" /doave="scitation" / doave="scitation" /doave="scitation" / doave="scitation" / doave="scitation</pre>	<pre>//iab_host="PHIOB" /</pre>
<pre>CDNA Library Preparation: Dr. M. Bento Soares, University of Iowa CDNA Library Arrayed by: Dr. M. Bento Soares, University of Iowa DNA Sequencing by: Dr. M. Bento Soares, University of Iowa DNA Sequencing by: Dr. M. Bento Soares, University of Iowa Clone Distribution: Researchers may obtain clones from Research Genetics (www.resegen.com) or from Open Biosystems (www.openbiosystems.com). Seq primer: M13 PORWARD New openbiosystems: com). Seq primer: M13 PORWARD POLYAFIES 1. G85 1. G85 1. G85 1. G85 1. Creation/Qualifiers 1. G85 1. G85 1. Creation/Qualifiers 1. Creation/Qualifiers 20LYAFIES 1. G85 1. Creation/Qualifiers 20LYAFIES 20LYAF</pre>	<pre>/dimensional contains and contained on the contained on the contained polylinker; site 1: BCoR I; Site 2: Not I; /note="Cream: Lung; Vector: pT73-Pac (Pharmacia) with a modified polylinker; site 1: BCoR I; Site 2: Not I; UT-CF-ENN is a normalized cDNA library containing the following tissue(s): primary Lung Cystic Fibrosis Epithelial Cells. The library was constructed according to Bonaldo, Lennon and Scares (Genome Research, 6: 791-806, 1996. First strand CDNA synthesis was primed with an oligo-dT primer containing a Not I site. Double stranded cDNA was ligted to an ECoR I adaptor; digested with Not I, and cloned directionally into pT773-Pac vector. The oligonucleotide used to prime the synthesis of first-strand DNA contains a library tag sequence that is located between the Not I site and the (dT)18 tail. The sequence tag for this library is cTGCTCAGGT. TAG IISSUB-Hunn Lung Epithelial Cell Lines untreated LPS 6hr To LPS 24h TAG IISSUB-Hun Lung Epithelial Cell Lines untreated LPS 6hr To LPS 24h</pre>	Query Match23.8%; Score 655; DB 5; Length 685;Best Local Similarity98.5%; Pred. No. 4.7e-161;Matches 669; Conservative0; Mismatches 9; Indels 1; Gaps 1;Qy345 AgGGACAGGGCTTGAGGGCCAGTGAGGGCCTGGGGCCCCAGGGCCCCCAGGGCCCCTGGGGCCQy345 AGGACAGGGCTTGAGGGCCAGTGAGGGCCGGGGGCGCGGGGCGCCGGGGCCCCCAGGGCCCCCAGGGCCCCCAGGCCCCCC	QY525GCAACTGGTGTGTGTGGTGGGGGGGGGGGGGGGGGGGGG

÷

Page 6	<pre>temport international filters</pre>
89-920-100.rst	FFATURES source source sources sources Matches 753 Oy 1882 Db 791 Oy 1998 Db 611 Oy 1998 Db 611 Oy 2351 Oy 2355 Db 491 Oy 2356 Db 491 Oy 2356 Db 491 Oy 2356 Db 551 Oy 2356 Db 551 Oy 2356 Db 2117 Db 2117 Db 2117 Db 2117 Db 2117 Db 2117 Db 2117 Db 2117 Db 2117 Db 251 Oy 2350 Db 191
Dec 2 08:51:54 2004 us-09-9	<pre>10.0 CONCINCTINGROUTINGCOMMETHOR CONSTINUENCINCTING CONSTINUENCINCE CONST</pre>
Hundrey Constraints	QY 21 QY 21 Db 1 Db 1 QY 22 QY 23 QY 24 QY 24 QY 24 QY 24 QY 24 QY 25 QY 26 QY 27 QY 26 QY 27 QY 26 QY 27 QY 26 QY 27 QY 26 QY 27 QY 26 QY 26 QY 26 QY 26 QY 26 QY 27 QY 28 QY 26 QY 26 QY

2. 15. 34

41 A

御嗣

< Thu Dec 2 08:51:54 2004</pre>

2589 AAGTTGTCCTACTGCCATGTTTTTGTACCTGAAATAAAGCATATTTTTGCACTTGTTACTG 2648 	2649 TAC 2651		Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н	Homo sapiens vience. Homo sapiens vience. Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo. 1 (bases 1 to 640) Ronaldo, M F. Lennor, and Soares.M.B.	Normalization and subtraction: two approaches to facilitate gene discovery Genome Res. 6 (9), 791-806 (1996)	97044477 8889548 Contact: McCray, PB	McCray Lab University of Iowa 2024 University of Iowa Med Labs, Iowa City, IA 52242, USA 7e1: 319 356 4866 Fax: 319 356 4171 Emmil: paul-mccray@uiowa.edu Tissue Procurement: Dr. M. J. Welsh, University of Iowa CDNA Library preparation: Dr. M. Bento Soares, University of Iowa CDNA Library preparation: Dr. M. Bento Soares, University of Iowa DNA Sequencing by: Dr. M. Bento Soares, University of Iowa DNA Sequencing by: Dr. M. Bento Soares, University of Iowa Clone Distribution: Researchers may obtain clones from Research Genetics (www.resgen.com) or from Open Biosystems (www.openbiosystems.com).	- LOL	Cells" (dev Etage="Adult" /lab_host="DH10B (Life Technologies) (T1 phage resistant)" /clone_lib="UI-CP-EN1" /clone_lib="UI-CP-EN1" /note="Organ: Lung; Vector: pT7T3-Pac (Pharmacia) with a modified polylinkrer; Site 1: EcoR 1; Site 2: Not 1; UI-CP-EN1 is a normalized_CDNA library containing the following tissue(s): Primary Lung Cyetic Fibrosis Epithelial Cells. The library was constructed according to Bonaldo, Lennon and Soars, Genome Research, 6;791-806,	1996. First strand CDNA synthesis was primed with an oligo-dT primer containing a Not I site. Double stranded CDNA was ligated to an ECOR I adaptor, digested with Not I, and cloned directionally into pTT3-Pac vector. The oligonucleotide used to prime the synthesis of first-strand CDNA contains a library tag sequence that is located between the Not I site and the (dT)18 tail. The sequence tag for this library is CTGCTCAGGT. TAG TISUES Human Lung Epithelial Cell Lines untreated LPS first_to LPS 24h TAG_LDB-UI-CF-ENI TAG_LB-UI-CF-ENI
QY 25 Db	QY 26	27	RESULT 7 BQ045123/c LOCUS DEFINITION ACCESSION VERSION KEYWORDS SCUTCE	2 13 1	TITLE JOURNAL	MEDLINE PUBMED COMMENT		FEATURES source		

ORIGIN

Thu Dec 2 08:51:54 2004

us-09-989-920-100.rst

Page 8

943 GTTTATGCCACTGATTATGATAGGGAATATTATCTTTGAACCCAATGAAGTGTTTTCTC 1002 EST 26-JUN-2003 ö ibirary in the pCWVSPORT6 vector(Life Technologies) was constructed at Bioserve Biotechnology (Laurel MD) essentially following the protocols of the SuperScript essentially following the protocols of the SuperScript flasmid System full details of which are contained in the manufacturer's Instruction manual (http://www.lifetech.com/). First strand synthesis was carried out using a Not I primer-adapter [5'-pGACTAGTTCTAGATCGCGAGGGGCGCCC(T)15-3']. EST analysis was performed on the unamplified library at the NIH Intramural Sequencing Center (NISC)." 265 CTCATGCCCTTCGTCCTGAGGAGCCCTGAGGTGGGCAGCAGGGGGCCAGGGGAGGTTTTCA 206 883 205 GGCCTTCATCAAAGAAACAACATCCTCAGCTCCGCACCCCCTCATCCTGCACTT 146 884 ACC-GGTGTGTGTGCCCTTGTCAGCTAGCATACGGTGGGCCCACCTGGCCCACTGGCT 942 ترمينية (11 bp mRNA linear BST 26-JUN-200: 2018908/91 Human lacrimal gland, unamplified: oj Homo sapiens cDNA clone oj28908 5', mRNA sequence. /tissue type="lacrimal gland" /dev stage="Adult" /lab_host="EMDH10B" /loce=lib="Human Earimal gland, unamplified: oj" /note=lib="Hye; Vector: pCMV5port6; RNA was extracted from 2 human lacrimal glands. A directionally cloned cDNA 145 ACCNGGTGTGTGACGCCTTGTCAGCTAGCATACGGTGGGCCCACCTGGCCCACTGGCT 86 85 GTTTATGCCACTGATTATGATAGGGAATATTATCTTTGAACCCAATGAAGTGTTTTCTC 26 Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo. 824 GGCCTTCATCAAGGGGAACAACATCCTCAGGTCCGCACCCCTCATCCTGTATCAGGACTT Gaps Dickinson, D., Laurie, G. and Wistow, G. Expressed sequence tag analysis of human lacrimal gland Unpublished (2002) ö Query Match 21.9%; Score 604.2; DB 6; Length 611; Best Local Similarity 99.5%; Pred. No. 1.1e-147; Matches 606; Conservative 0; Mismatches 3; Indels 0. Section on Molecular Structure and Function National Eye Institute 6/31, NH, Bethesda, MD 20892-2740, USA Tel: 301 402 3452 Fax: 301 496 0078 Email: graeme@helix.nih.gov Plate: 28 row: 9 column: 08 Seq primer: M13RP1 reverse primer (ABI) /organism="Homo sapiens" /mol_type="mRNA" /db_xref="taxon:9606" /clone="oj28g08" Location/Qualifiers CCCCATCACAAAAAAAA 1022 φ CD723979.1 GI:32274833 25 CCCCATCACAAAAAAAAA sapiens (human) (bases 1 to 611 Contact: Wistow G 1. .611 Homo sapiens Homo EST 1003 source DEFINITION **ORGANI SM** AUTHORS TITLE JOURNAL COMMENT ACCESSION RESULT 9 CD723979 VERSION KEYWORDS SOURCE REFERENCE FEATURES ORIGIN LOCUS ß g g ą qq 8 5 \mathcal{S} 8 /dev stage="Adult"
/lab_nost="DH10B (Life Technologies) (T1 phage resistant)"
/lab_nost="DH10B (Life Technologies) (T1 phage resistant)"
/clone="Dorgan: Lung: Vector: pT773-Pac (Pharmacia) with a
modified polylinker; Site_1: EcoR I; Site_2: Not I;
UT-CF-ENN1 is a normalized CDNA library containing the
following tissue(S): Primary Lung Cystic Fibrosia the
following tissue(S): Primary Lung Cystic Fibrosia the
following test and Soares, Genome Research, 6:791-006,
1996. First strand CDNA synthesis was primed with an
oligo-dT primer containing a Not I site. Double stranded
cDNA was ligated to an EcoR I adaptor; digested with Not
I, and cloned directionally into pT773-Pac vector. The
oligonucleotide used to prime the synthesis of
first-strand CDNA contains a library tag sequence that is
located between the Not I site and the (d7)18 tail. The
sequence tag for this library is CTGCTCAGGT.
TAG TISCUE-Human Lung Epithelial Cell Lines untreated LPS
choored to an extend Coll. 2024 University of Iowa Med Labs, Iowa City, IA 52242, USA Fax: 319 356 4866 Fax: 319 356 7171 Email: paul-mccray@uiowa.edu Tissue Procurement: Dr. M. J. Welsh, University of Iowa CDNA Library Preparation: Dr. M. Bento Soares, University of Iowa CDNA Library Prreparation: Dr. M. Bento Soares, University of Iowa CDNA Library Prreparation: Dr. M. Bento Soares, University of Iowa CDNA Library Preparation: Dr. M. Bento Soares, University of Iowa CDNA Library Preparation: Dr. M. Bento Soares, University of Iowa CDNA Library Preparation: Dr. M. Bento Soares, University of Iowa CDNA Library Preparation: Dr. M. Bento Soares, University of Iowa CONA Library Preparation: Dr. M. Bento Soares, University of Iowa Cone Distribution: Researchers may obtain clones from Research Genetics (www.resgen.com) or from Open Biosystems i, 463 566 464 AAAGCTCCTCCTGGCTTTCCTCCCCCCAATCTATGGGTCACAGGCTAACAGATCTGAG 523 583 505 GGCAACTGCTGCTAGTGGCCCGGGGCTGCCCTGCCCGGGCTCTGCCGCCTCTTAGG 446 703 565 AAAGCTCCTCCTCGCTTTTCCTCCCCCCCAATCTATGGGTCACAGCTAACAGATCTGGG 506 GCCTTCTAGAGGCAGTGTCCTTAGGAAGTAGCTCTGAGGCATGGGTTTTCTGCTCCTGTG 643 GCCTTCTAGAGGCAGTGTCTTAGGAAGTAGCTCTGAGGCATGGGTTTTCTGCTCCTGTG 386 763 CAGGCCAGCTGATGGGATAAGGTGGGGAAGGACGGTCAGTGGTGGCCAGCTGGCCAGCTGGCCA 326 325 GCCTGGCGATGGGGAAACCAAACCATGTCCCCCCAGCGAAGGGCCAGGTGGGAACCTGTC 266 764 CTCATGCCCTTCGTCCTGAGGAGCCCTGAGGTGGGCAGCAGGGGGCCAGGGGAAGTTTTCA 823 CTGCCCAGGGGCACCCTGAGGCTCCTGAAACCCCCCACTTAGCTTCCAGACCTTTCTGCA CIGCCCAGGGGCACCCTGAGAGCTCCCGGAAACCCCCCACTTAGCTTCCAGACCTTTCTGCA GGCAACTGCTGTGCTAGGCCAGGGCTGCACCTGCCATCCCCGGGCTCTGCCACTTTAGG CAGGGCAGCTGATGGGATAAGGTGGGGAAGGACGGTCAGTGCTTGGGCCCCAGCTGGCCA /mol_type="mRNA" /db_xref="taxon:9606" /clone="UI-CF-EN1-aed-n-21-0-UI" /clssue_type="Primary Lung Cystic Fibrosis Epithelial GCCTGGCGATGGGGAAACCAAACCATGTCCCCCAGCGAAGGGCCAGAGTGGGAACCTGTC 1; Gaps Length 625; 0; Indels Score 608; DB 6; L Pred. No. 1.1e-148; 0; Mismatches .. .625 'organism="Homo sapiens" Location/Qualifiers IAG_SEQ=CTGCTCAGGT" LIB=UI-CF-EN1 (www.openbiosystems.com) Seg primer: M13 FORWARD POLYA=Yes. to LPS 24h 22.1%; 99.8%; Matches 619; Conservative Cells" Similarity Query Match Best Local S 404 625 524 584 445 644 385 704 source REATURES ORIGIN ĝ, 8 q qq. dū'' ð ð g ð. 8 qq 8 ð

्र**ापकी** अक्ष

<pre>167 GCACTGGGCGATGTCCCCAGAGGCAGGGCAGGTCTCTAGAGGGGGGGTCTCCCCACATGACTG 226 1 </pre>	227 GCTTCACAGGGCACTTCGGGGTTGGGGTTGCTGTGTGTGT	287 TGCAGGTAGGAAATGTTTGTACCCTCTTCTGATTGCCACCCCCTTCGCCCCTTAG 346 	347 GGACAGGGCTTGAGGGCCAGTGAGGGGCTGGTCAGGCACCCCAGGCCTCCTTGGGGACCTG 406 	407 CCCAGGGGCACCCTGAGAGCTCCTGAAACCCCCACTTAGCTTCCAGACTTTCTGCAAAA 466 111111111111111111111111111111111111	<pre>467 GCTCCTCGGGCTTTCCTCCCCCCAATCTATGGGCTCACGGCTAACAGATCTGAGGGC 526 1 </pre>	527 AACTGCTGTGCTAGTGGCCAGGGCTGCCACCTGCCACCCCGGCTCTGCCACTTTAGGGCC 586 	587 TICTAGAGGCAGTGTCCTTAGGAAGTAGCTCTGAGGCATGGGCTTTCTGCTCCTGTGCAG 646 	647 GGCAGCTGATGAGGAAAGGACGGCAAGGACGGCTGGGCCGGCC	707 TGGCGATGGGGGAAACCATGTCCCCCAGGGAAGGGCCAGAGTGGGAAACCTGTCTC 766 111111111111111111111111111111111111	67 A	<pre>C A1928242 MN W055h01.X1 NCI mRNA sequence. A1928242 GI A1928242 GI BST. A1928242 GI BST. BST. HOMO BADJENS (HOMO BADJEN</pre>
ζ ζ	QY Db	vy da	νο dα	λο q	yo du	δ Δ	QY Db	AD da	AQ AQ	ov T	RESULT 10 A1928242/c DEFINITION ACCESSION VERSION VERSION KEYWORDS OURCE OURCE AUTHORS TITLE TITLE COMMENT

2209 2269 2389 2449 2508 2568 2628 2629 ATATTTTGCACTTGTTACTGTACCATAGTGCGGGACGAGAAGTCTGTATGTGGGATCTGTG 2688 BM019092 768 bp mRNA linear BST 30-OCT-2001 603647129F1 NIH_MGC_98 Homo sapiens CDNA clone IMAGE:5428711 5', mRNA sequence. BM019092 2329 Ä 518 398 338 278 218 217 GEAGTATCTCTCTCGGGCTGTGGTCGCCCTTGGATGGGTCGGGTGTGAGGTCCTGG 158 458 98 8 8 157 GGAGGGGCGTTGAGCTCAAAGTTGTCCTACTGCCATGTTTTTGTACCTGAAATAAAGC 97 ATATTTTGCACTTGTTACTGTACCATAGTGCGGGACGGAGGAAGTCTGTATGTGGGGATCTGTG GOTOCCACAGOTACTGATGGCCCGGGCCAGGTTGAGCTTCCTGGTGTCCCGGATCC 457 CTGTCCTGAGGCCTCATTGCTGGGCTGGGGTGTGCTGGGGAAAAGCTTTGCGGGGCTT 337 CCTGGGTGGGAGGCTACTGCTGTGTTCTCTATGTTCTGTGTTTTAAATGATTTCTTT 2569 GGAGGTGGGCGTTGAGCTCCAAAGTTGTCCTACTGCCATGTTTTTGTACCTGAAATAAAGC 577 GGTCCCACAGCTAGCTGATGGCCCGGAGCTAGGTTGCAGGTTCCTGGTGTCCGGATCC 2210 CACTTGCAGATCTCATGCTCCAGATAGGTGGGGGACAAGTTCTTTTGTCACAGTGCTGGCT 2330 GCTTGGTTAACCACAGAAGAAGAGAGGGGACTGTTTGGGGGTGCCTCTCTGCAGCCTCCCCGT 2390 GCTGGGTGGAAGCACGGTTACTGTGTTCTCTCTTAAAAATGTTTCATGATTTCCTTT CTAAAGATGTAACCTCCACACCTTTCTCCCAGATTGGGTGACTCTTTTCTAAA-GGTGGTG 517 CACTTGCAGATCTCATGCTCTCAGATAGGTGGGACAAGATCTTTTTGTCACAGTGCTGGCT 1; Gaps Query Match20.5%;Score 563.4;DB 1;Length 577;Best Local Similarity99.7%;Pred. No. 6.5e-137;Matches 575;Conservative1;Matches575;Conservative0;Mismatches1;Indels1; 2450 2150 source DEFINITION RESULT 11 BM019092 ACCESSION FEATURES ORIGIN LOCUS g q δ q q δ g \mathcal{S} q δd å \mathcal{S} g δ q g 8 δ 8 8

us-09-989-920-100.rst

Page 10

FT)

4		3 1770 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	r 1826	[-2002		omi;	gene				Iowa Iowa Irch				ant)"	t , Q	and Id gated	ide
	CACTAGTACCTTGGGGGACTGAGGAACCTTTTGGCTTCTCGGGGAGCCGGAAGCCTTTCC CACCTAGTACCTTGGGGGACTGAGGAACCTTTTGGCTTCTCTGGGGACCGGAAGCCTTTCC CACTAGTACTTCGGGGACTGAGGAACCTTTAGGCTTCTCTGGAGCCTGCAAGACCTTTCC CAACTAGTACTAGTGAGAACTGAGAGACCTTTAGGCTTCTCTGGAGCCTGCAAGACCTTTCC	CATGRECCAGCTGCTCTCCTGCTACAAGGGGGACTGCTCAC-AGTGGCCTCAGGCTTGG 	TGGTTTTGAGGGGCGCCCCCCCGGCCCTCCATAAGGGTATCCTGGGCCTGAGAATT 	tear EST 07-OCT-2002 ens cDNA clone		Vertebrata; Euteleostomi ; Hominidae; Homo.	M.B. approaches to facilitate ge		A 52242, USA	y of Iowa	CUMM LIDERARY DEPARATION: DF. M. BENCO SOATES, UNIVERSITY OF JON CDNM LIDERAY AFRAVED by: DF. M. BENCO SOATES, UNIVERSITY OF IOW DNA Sequencing by: DF. M. BENCO SOATES, UNIVERSITY OF IOW DNA Sequencing by: DF. M. BENCO SOATES, UNIVERSITY OF IOW Clone Distribution: Researchers may obtain clones from Research	ems in this cDNA hed compliment)		/crontsm="homo saptens" /mol_type="mRNA" /db_xref="taxon:9606" /clone="UI-CF-DU1-abc-n-17-0-UI"	(T1 phage resist	venatured av wir Site 2: Not 1; Y containing the thelial Cells Th	Bonaldo, Lennon 996. First strar go-dT primer nded cDNA was li	ot I, and cloned The oligonucleot
	TTGGCTTCTCGGGG TTGGCTTCTCGGGGG 	AGGGGACTGCTCAC- AGGGGACTGATCACA	CCTCCATAAGGGTAT CCTCCATAAGGGTAT	o mRNA linear P-DUL Homo sapiens	י סלדני א מלדני	Craniata; Vertebrata; Eutel Catarrhini; Hominidae; Homo	tres,M.B. two approaches	l6)	s, Iowa City, IA	elsh, Universit	M. BENCO SOAFES I. BENTO SOAFES, O SOAFES, Unive S may obtain cl	Genetics (www.resgen.com) or irom Upen Blogystems (www.openbicsystems.com). (me following repetitive elements were found in this CDNA sequence: 188-250, _>MERSBB#DNA/MER1_type (matched compliment)			rechnologies)	tte_1: EcoR 1/ 1 zed_cDNA library rimary Lung Epil	d according to 1 h, 6:791-806, 1 med with an olig e. Double strai	digested with No T3-Pac vector, 7
	GGGGACTGAGGACCT GGGGACTGAGGACCT GGGGACTGAGGACCT	getettectgetaca getettectgetaca	cceccccccce BAGCCGACACACCGG	8926 577 bp mRNA F-DU1-abc-n-17-0-UI.S1 UI-CF-DU1 Homo	GI:23526358 s (human)	zoa; Chordata; (ria; Primates; (577) ennon,G. and Soa nd subtraction:		, FB Dwa Of Iowa Med Labs,	sb 71 ray@uiowa.edu ent: Dr. M. J. V	reparation: Jr. rrayed by: Dr. b by: Dr. M. Bent cion: Researcher	ssgen.com/ or ri cems.com). repetitive eleme 50, >MER58B#DNA/	r: M13 FORWARD Location/Qualifiers 1. 577	organısm="Homo sapiens" mol_type="mRNA" db_xref="taxon:9606" clone="UI-CF-DU1-abc-n-	<pre>cype="trimary cage="Adult" sst="DH10B (Life lib="UI-CF-DU1"</pre>	Organ: hung; ve ed polylinker; s JUT is a normali ing tissue(s): E	/ was constructe / Genome Researc /nthesis was pri /ing a Not I sit	ScoR I adaptor, ionally into pT7
			1 TGGTTTTTGAGGGG 2 AAGGAAAAGAGAG	BU678926 UI-CF-DU1-abc-n	BU678926 BU678926 BU71 BU71 BU71 Homo sapiens (human)	Homo sapiens Eukaryota; Meta Mammalia; Euther	 (bases 1 to 577) Bonaldo,M.F., Lennon,G. and Soares,M.B. Normalization and subtraction: two approdiscovery 	Genome Res. 6 (9 97044477 8889548	Contact: mccray, PB McCray Lab University of Iowa 2024 University of I	Tet: 319 356 71 Fax: 319 356 71 Email: paul-mcci Tissue Procureme	CDNA LIDEALY DI CDNA LIDEALY A DNA Sequencing Clone Distribut	Genetics (www.re (www.openbiosyst The following 1 sequence: 188-29	seq primer: ML3 FORWARD POLYA=Yes. Location/Quali 1577	/mol_ty /db_xre /clone=	/ dev_su / dev_su / clop_ho	/noce modifié UI-CF-I followi	LIDTAT) Soares, CDNA sy CONTAIT	to an E directi
Db 422	I	QY 1712 Db 542	Qy 1771 Db 602	RESULT 12 BU678926 LOCUS DEFINITION	ACCESSION ACCESSION A VERSION A VERS	-	REFERENCE AUTHORS TITLE	IAL NE		смне			FEATURES source					
. <u>.</u>				-			2:			4;	233 1	293	353	1413 241	173	533	591 21	251
	l; Euteleostomi e; Homo.	Collection (MGC)	m (LLNL) Ory	ation can be		line"	1: XhoI; Site_2	llowing 5' d by Ling Hong versity of	Technologies).	768; 7; Gaps	e 1-	TAAAAGAATAAA 12 TAAAAGAATAAA 12	TTCTGCATTAAC 13	GGAAGGTTCTGG 14	CAGAGCCCTTTG 14	TTGGTCTGCATC 15	CCCTGGCCAGGTCCCTCAGGG-TTGATGCGTGGAGAA-GGACTTTGAGCAGTGGTGGGCA 15 	TGATCTCACCTC 16
	Craniata; Vertebrata Catarrhini; Hominida	Gene	n/Rubin Laborat G.E. Consortiu	inc. 		cell	istant)" : pOTB7; Site m rvining pi	adoptor: GCCACGAG(G). Library constructed by Ling 1 in the laboratory of Gerald M. Rubin (University of	I ZAF-CUNA SYNC Mt II RT (Life Mtary."	DB 4; Length 768 36; 27; Indels	TACTGAGCCAGACC TACTGAGCCAGACC	AGTAAGGGCTTTTT AGTAAGGGCTTTTT	TTCAGATGAGCGGT	GGCGAGCCCCCCTT GCGAGCCCCCCTT	TCGTGGTGGGAATG	GACCCGCTGGGCCT GACCCGCTGGGGCCT	GAA - GGACTTTGAG	TGGGAGGGGCAGCC
16) Chordata; Cranis Primates; Catari	i.nih.gov/. E Health, Mamma sherd, Ph.D.	nih.gov rcc rion: Ling Hon by: The I.M.A.	ACYTE GENOMICS, MGC clone disti A.G.B. Consort j column: 08	lifiers Mo sapiens" NA"	/db_Tref="taxon:9606" /clone="IMAGE:5428711" /tissue_type="astrocytoma grade IV,	110B (phage-res VIH MGC 98" : brain; Vector	ACGAG(G) Libr	serkeley, using and Superscrif a NIH_MGC Lik	Score 562.8; DB 4; Pred. No. 1e-136; 0; Mismatches 27;	VAAAGTCTGCTGAC	AGAAAGCCTCAGAC AGAAAGCCTCAGAC	AAGCAGGGGGAAGCA	srerccrererecer srerccrererece	Idagtccaccccccc Idagtccaccccccccc	TTCCTGTTCCTGGG	G - TTGATGCGTGGA GATTGATGCGTGGA	TCACACTCTTGTCC
2.1 GI:16533446	Homo sapiens (human) Homo sapiens Eukaryota; Metazoa; Ch Mammalia; Butheria; Pi	<pre>I (bases t to 768) NHHMGC http://mgc.nci.nih.gov/. National Institutes of Health, Mammalian Unpublished (1999) Contact: Subert Straisherd, ph D.</pre>	Email: cgapEs-r@mail.nih.gov Tissue Procurement: ATC CONA Library Prepartion: Ling Hong/Rubin Laboratory CONA Library Arrayed by: The I.M.A.G.E. Consortium (LLNL)	DNA Sequencing DY: Incyte Genomics, Inc. Clone distribution: MGC clone distribution information found through the I.M.A.G.E. Consortium/LLNL at: http://image.llnl.gov Plate: LLCM1896 row: 1 column: 08	Location/Qualifiers Location/Qualifiers 1768 /mol Evre="mRNA"	/db_xref="tay /clone="IMAGE /tissue_type=	/lab_host="DF /clone_lib="h /note="Organ: Fcont - Chyn -	cloned into adaptor: GGC	(Stratagene) (Stratagene) Note: this is	20.4%; 94.8%; vative	accgrterageccgrtacagaaaagtctgetgactgacageccagacerccartacerc 	atccctgttggattatttaagaaagcctcagacagtaagggcttttttaaaagaataaa 	ATGACTTGGTTTGCGCTTGGAGGCAGGGGAAGCATTCAGATGAGGGTTTCTGCATTAAC 	ccreaccartcaccarcarcarcarcargaccaggcgaggccccccaraggaggargag 	TGCTTCAGCTGGCTGGCAGAGTCCACCCCGCCTCGTGGTGGGAATGCAGAGCCCTTTG 	CTTTCCTTCTTCCCGCCTGCTTCCTGGGGAACCGGCTGGGCCTTTGGTCTGCATC	SCCAGGTCCCTCAGG	gcagtggcctcctggccagctcacactcttgtcctgggagggggggg
N BM019092 DS EST.			шн	Clone Clone found th http://: Plate: 1	e Ce					Query Match Best Local Similarity Matches 626; Conser	1174 ACCGTC 2 ACCGTC	1234 ATCCCT 62 ATCCCT	1294 ATGACT 122 ATGACT	1354 CCTGCC 182 CCTGCC	1414 TGCTTC 242 TGCTTC	1474 CTTTCC 302 CTTTCC	1534 CCCTGG 362 CCCTGG	1592 GCAGTG
VERS ION KEYWORDS	SOURCE	REFERENCE AUTHORS TITLE JOURNAL COMMENT			FEATURES	. 양일 위 : 고 1 목			ORIGIN	· · · ·	->. 	ູ ⁷ 0 ຊີ	ος. P	vo vo	QY da	v a	QV DD	6

Thu Dec 2 08:51:54 2004

•

Tissue Procurement: Christopher Moskaluk, M.D., Ph.D., Michael R. Tissue Procurement: Christopher Moskaluk, M.D., Ph.D., Michael R. CDNA Library Arrayed by: Greg Lennon, Ph.D. CDNA Library Arrayed by: Greg Lennon, Ph.D. CDNA Library Arrayed by: Ganome Sequencing Center DIAD Sequencing by: Washington University Genome Sequencing Center CDIAD Editribution: NGT-CGAP Clone distribution information can be found through the I.M.A.G. E. Consortium/LML at: New-bio.llnl.gov/bbpy/image/image.html Seq primer: -400P from Gibco High quality Sequence Stop: 443 Location/Qualifiers Source 1. 547 Arganism="Homo sapiens" (AD_Ltype="mRNA" AD_Ltype="mRNA" (AD_Ltype="mRNA"	Outery Match19.8%; Score 546; DB 2; Length 547; Best Local Similarity Best Local Similarity 99.8%; Pred. No. 2.5e-132; Matches 546; Conservative 0; Mismatches 1; Indels 0; Gaps 0; Cy 2179 GGTTGAGCTTCTGGGTGCCAGTCGGATCCATTGCGGATCTCAGCTCTCAGTTCGGTCTCAGTCGGATCCAGATCAGGCTCACTCA	Qy2479AGATTGGGTGACTCTTTTCTAAGGTGGGGGGGGGGGGGG
used to prime the synthesis of first-strand CDNA contains a library tag sequence that is located between the Not I site and the (d7)18 tail. The sequence tag for this library is GGGTG7AGGC. Tag TISSUB-Lung Epithelial Cells Tissue nos 359-368 Tag_LIB=UL-CF-DU1 Tag_LIB=UL-CF-DU1 Tag_EpiSeGGGCTGAGGC Match SEG_SEGGGCTGAGGC Match Sectoral Similarity 99:58; Pred. No. 4.6e-136; Matches 562; Conservative 0; Mismatches 3; Indels 0; Gaps 0; 9 11 TragTAGACCAATGAAATATGTACCCAATAAAAAAAAAAAAAA	Qy1211TgaGGCGAGACCTCATTACCTCCATTACTTGATGATTATTTAAGAAAGCCTCAGACAGT1270Db249TGAGCCAGACCTCCATTACCTCCATCCTGTTGGATTATTTTAAGAAAGCCTCAGACAGT308Qy1271AAGGGCTTTTTTAAAGCATTACTTGCTTGGGTTGGAAGCAGGGGAAGCATTC308Qy1271AAGGGCTTTTTTAAAGCATTAGCTTGGTTTGGCTTGGAAGCAGGGGAAGCATTC308Qy1331AGATGAGCTTTTTAAAGCATTAGCTTGGCTTTGGCTTGGAAGCAGGGGAAGCATTC368Qy1331AGATGAGCGTTTTTTAAAAGCATTAACCCTGGCTTGGCT	<pre>RESULT 13 AW271767 = 547 bp mRNA linear EST 03-JAN-2000 DEFINITION = AW271767 = 547 bp mRNA linear EST 03-JAN-2000 DEFINITION = AW271767 = AW271777 = AW271777 = AW27177777 = AW271777777 = AW27177777 = AW27177777 = AW27177777 = AW27177777 = AW2717777 = AW27177777777777777 = AW27177777777777777777777777777777777777</pre>

:

2 08:51:54 2004 Thu Dec

.

us-09-989-920-100.rst

Page 12

. Vigeri

1.1

Db 235 TCTTTTCTAAAGGTGGGGGGGGGGGGGGGGGGGGGGGGG	Qy 2671 CTGTATGTGGGATCTGTGGTTGGGATGGAATGGAATGGA	ch 1 Similari 537; Cons 75 TGGCTT 38 TGGCTTT
RESULT 14 RESULT 14 AMM73671/c AW173671 535 bp mRNA linear EST 16-NOV-1999 DEFINITION xj10908.x1 NCI CGAP_Ut2 Homo sapiens cDNA clone INMGE:2656862 3', REFINITION AM173671 AW173671.1 G1:6439619	<pre>MBDS EST BENDS EST BENDS BENDS (human) BENDS HEARS (human) BENDS PARTATORIA (TATAIATA) VETTEBRATATA, Butteleostomi, NUTSM FORM Satura (TATAIATA) VETTEBRATATA, Butteleostomi, BENDS 10 Dasses 1 to 535) HORS NCTCGAP http://www.ncbi.nlm.nih.gov/ncicgap. HORS NCTCGAP http://www.ncbi.nlm.nih.gov/ncicgap. HORS NCTCGAP http://www.ncbi.nlm.nih.gov/ncicgap. HORS NCTCGAP http://www.ncbi.nlm.nih.gov/ncicgap. The former and a material formation of the formation and the formation and the formation and the formation information can be numbrished (1997) NT Contact: Robert Strausberg, Ph.D. Contact: Robert Strausberg, Ph.D. Contact: Robert Strausberg, Ph.D. MT Statis (agabs-remain].nih.gov Tissue Procurement: Christopher Moskaluk, M.D., Ph.D., Michael R. Emmert-Buck, M.D., Ph.D. CONM Library Preparation: Life Technologies, Inc. CONM Library Arreyed by: Grego Lannon, Ph.D. CONM Library Arreyed by: Grego Lannon, Ph.D. Cond through the I.M.A.G.E. Consortium/LLNL at: Namert 400T http://mage/image.html Source found through the I.M.A.G.E. Consortium/LLNL at: Migh quality sequence stop: 420. High quality Sequence stop: 42</pre>	Query Match 19.3%; Score 532.4; DB 2; Length 535; Best Local Similarity 99.6%; Pred. No. 9.6%-129; Matches 533; Conservative 0; Mismatches 2; Indels 0; Gaps 0; 2191 TGGTGTCCAGTCCGGATCCACATGCAGATCATCCTCTCGGATAGGTGGGACAAGTTC 250 2191 TGGTGTCCAGTCCGGATCCACATGCAGATCATCCTCTCGGATAGGTGGGACAAGTTC 250 535 TGGTGTCCAGTCCGGATCCACATGCAGATCAGGTAGGTGGGACAAGTTC 276 535 TGTTGTCCAGATCCAGATCCACATGCAGATCAGGTAGGTGGAGGACAAGTTC 276 535 TGTTGTCCAGGTCGGCATCTCACATGCTCAGGATAGGTGGGGAGCAAGTTC 276 2251 TTTTGTCAGGTGCTGGCTGGCTCGAGAGGGGCCTCATGGAGGGGGACGAGTCTCTCGCGG 216 2351 TTTTGTCACGGGCGGGGGGGGGGCCTCATGCGCGGGGGACGGGGGACGGGGGGGG

-1990 Scares, Ph.D. 2n, Ph.D. rsity Genome Sequencing Center distribution information can be ium/LLML at: teor: pT7T3D-Pac (Pharmacia) with tell: Not I; Site 2: Eco RI; malized library NCI CGAP KAI3 was were made in vitro. Following HAP is used as tracer in a subtractive the driver was PCR-amplified cDNAs is used From the same library i. 145607-1456775, and tion by Bento Soares and M. CTCAAGTTGTCCTACTGCCATGTTT 2610 ACTGTACCATAGTGCGGGACGAGAAGT 2670 RNA linear EST 29-NOV-1999 ans cDNA clone IMAGE:2695873 3', і. Г TGGTGTGCCCTTGGATGGGTCAGGT 176 SCTAACAGATCTGAGGGCAACTGCTG 534 GCTAACAGATCTGAGGGCAACTGCTG 479 CTCTGCCACTTTAGGGCCTTCTAGAG 594 ACTGTACCATAGTGCGGACGAGAAGT 56 tta; Vertebrata; Euteleostomi; hini; Hominidae; Homo. aluk, M.D., Ph.D., Michael R. /ncicgap. nome Anatomy Project (CGAP), AATAAACTCACATTTGTAAG 2725 ||||||||||||||||||| AATAAAACTCACATTTGTAAG 1 1; Gaps 2; Length 538; -127; 0; Indels

÷

	5 GCACTCTTAGGAAGTAGCTCTGAGGCATGGGCTTTCTGCTCCTGTGCGGGCGCTG 654 [argementangereseaageareseresereseresesereseseresesereseseres 714	6 GGGAAACCAAGCCAGCGAAGGGCCAGGGGGGGAACCTGTCCTCATGCCCTT 774 1	cgrccrgaggaggccrgaggraggcaggaggggggggaggraggr	a aggagacaacarcrcragcrccgcaccccrcarcrrgrarcagcacrraccggrgrg 894 	a acreecentercaderade catacegeseccoaceregeceacargeraturargeceac 953 	<pre>1 TGATTATGATGGGGAATATTATCTTTGACCCAATGAGTGTTTTCTCCCCCATCAC 1011 111111111111111111111111111111111</pre>
478	595	655	715	775	835	895	954
	418	358	298	238	178	118	58
qq	VO	QY	yo	QY	QY	QY	QY
	PP	Db	da	dq	Db	Db	DÞ

Search completed: November 29, 2004, 14:15:24 Job time : 8397 secs This Page Blank (uspto)

5

- 5 ge. %

- e⁴ - -

- %

. `. _

2 08:51:54 2004 Thu Dec ×.

us-09-989-920-100.rnpb

Sequence 292, App Sequence 292, App Sequence 292, App Sequence 214, App Sequence 214, App Sequence 1160, Ap Sequence 2014, Ap Sequence 220960, Sequence 320960, Sequence 96975, A Sequence 96975, A Sequence 96975, A Sequence 96975, A	Sequence 501, Appl Sequence 1, Appli Sequence 1, Appli Sequence 2014, Ap Sequence 60622, A Sequence 60622, A Sequence 42447, A Sequence 87829, A Sequence 87829, A Sequence 87829, A Sequence 87829, A Sequence 87829, A Sequence 76, Appl Sequence 76, Appl Sequence 136201, Sequence 136201, Sequence 136201, Sequence 136201, Sequence 136201, Sequence 136201,	to Lung Specific Genes and
09-764-878- -10-079-854-878- -10-302-4129-854 -10-302-027- 10-302-027- -10-087-192 -10-027-632 -10-027-632 -10-027-632 -10-027-632 -10-027-632 -10-027-632 -10-027-632	4004408888 7 8000	ALIGNMENTS 989920 ns and Methods Relating 709/989,920 21 52,500
00400400440044	900 4 7 4 5 7 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 US/09: 11 VS/09: 12 12 13 12 13 11 12 13 11 12 13 11 12 2 11 12 12 12 12 12 12 12 12 12 12 12 12 1
CCCCC044666666000 000 000 0000000 0000000 0000000	000000000000000000000000000000000000	plication TON: 2957A TON: 20120557A TON: 2012 aa, Rober aa, Rober-Yu n, Seist-Yu i Chenghu TON: Comp DATE: 20 DATE: 20 DATE: 2000- DATE: 2000- DATE: 2000- DATE: 2000- DATE: 2000- BATE: 2
	000000000000000000000000000000000000000	00-100 00. Appl US200201 US200201 US200201 US200201 SCORMATIO RECIP SCORMATIO SCORMA S
000000 4 000000 4 000000 4 000000 4 000000 4		9-922 CANT CANT CANT CANT CANT CANT FIL
00000000000000000000000000000000000000	のののうまままままままままままままままままままままままままままままままままま	SULT 1 SULT 1 - 09-98 Sequent APPLIC
υυ υ υυ	000 00 0000000 0	AD VARACESCESCESCESCESCESCESCESCESCESCESCESCESC

Prote

ó

8 & 8

 δ_{2}

Query Match 100.0%; Score 2754; DB 9; Length 2754; Best Local Similarity 100.0%; Pred. No. 0; Matches 2754; Conservative 0; Mismatches 0; Indels 0; Gaps

us-09-989-920-100.rnpb

08:51:54 2004 Thu Dec

ki. Kal

Q Q	À A S	8 8 8	688	5 8 8	6 8	S 8 8	5 B č	5 8 č	5 A č	\$ A &		2 A 8	5 8 2	2 8 8	5 8 8	588	5 8 8
by 121 GAGTGGATGACGCTGGTGGCCTTAGCTTTTCTAGACAGTGTAATTGCACTGGGCGATGT 180 by 121 GAGTGGATGACGCTGGTGGCCTTAGCTTTTCTAGACAGTGTAAATTGCACTGGGCGATGT 180 by 121 GAGTGGATGACGCTGGGCGCTTAGCTTTTCTAGACAGTGTAAATTGCACTGGGGCGATGT 180	181 CCCCAGAGGCAGGCAAGGTCTCTAGAGCGGGTCTCCCACAGGCA 181 CCCCAGAGGCAAGGTCTCTAGAGCGGGTCTCCCACATGACTGAC	241 CTTCCGCTCGGGGGGTTGCATGCT 111111111111111111111111111111111111	301 GTTTGTACCTCTTTCTGATTGCCACCTCCTTCCC 	361 Geccragaccercarcacceccacceccecaccercertegeaccraceccaccecer 42: 11<	421 GAGAGCTCCTGAAACCCCGACTTAGCTTCCGAGACCTTTCTCGCAAAGCTCTCCTGGCTT 48 	481 TCCTCCC 481 TCCTCCC 481 TCCTCCC	541 TGGCCAGGGCTGCACCTGCCGGCCTCTGAGGGCCTTCTAGGGGCAGTG 60 541 TGGCCAGGGCTGCCACCCCGGGCTCTGGCACTTTAGGGCCATCTAGAGGCAGTG 60 541 TGGCCAGGGCTGCCACCCCGGGCTCTGCCACTTTAGGGCCATCTAGAGGCAGTG 60	601 TCCTTAGGAAGTAGGCATGGGGATGGGTTTTCIGCTCCTGTGCAGGGCAGCTGGTGGGA 600 601 TCCTTAGGAAGTAGCTTCTGAGGCATGGGTTTTCIGCTCCTGTGCAGGGCAGCTGGTGA 600 601 TCCTTAGGAAGTAGCTTCTGAGGCATGGGTTTTCTGCTCCTGTGCCAGGGCAGCTGATGAGA 600	OV 661 TAAGGTGGGGAAGAACGGTCGGTGGTGGGCCCCAGCCTGGCGACGAAA 720 Db 661 TAAGGTGGGGAAGGACGGTCGGTGGCCCCAGCCTGGCCGAGCAAA 720 Db 661 TAAGGTGGGGAAGGACGGTCGGTGGCCCCAGCCTGGCCGAGCAAA 720	Qy 721 CCAAACCATGTCCCCCAGGAAGGGGCCAGAGTGGGAACCTGTCCTTCGTCCT 780 01 111111111111111111111111111111111111	781 GAGGGGCCTGAGGGGCCAGGGGGCCAGGGGAAGTTTTCAGGCCTTCATCAAGGAG 840 1	by 841 ACARCATCCTCAGCTCCGCACCCTCATCCGGTATCAGCACTTACCGGTGTGTGACTGCC 900 0 1	oy 901 CTTGRCAGCTAGCATAGGACCCACCTGGCCCACTGGCTATTATGCCACTGATTA 960 01 0100000000000000000000000000000000000	09 961 TGATAGGGAATATTATCTTTGACCCAATGAAGGGTTTTCTCCCCCATCACAAAAAAAA	OY 1021 DattCTTATTTTTAGTAGCATGTATTTACCAAAAATAGGACCCAATATTGTATTTG 1080 Db 1021 AATTCTTATTTTTAGTAGCATGTATTTACCAAAAATATGTACTCAATTATTGTAGTAGT 1080	QV 1081 GATTTTATCAATTTAAAAATTGTGGAAATTTGTTTGCGCCAACATAATATTGAT 1140 QV	1141 1141
	-	୫ ୍ଟ୍ର		'			· · ·	10			a		-	~ <u>-</u>	-	~	

CTGGAGAAGGACTTTGAGCAGTGGCAGCGGGAGCAGTGGCCTCCTGGCCGCGAGCTCACACTCT 1681 TIGGTTCTCTGGAGCCTGCAGCACCTCTTCCCAGTGTCCCGGCTGCTACCAG Grettereccattreefcagertereactreacterectectectaaaccatgegegegegegecce TTGGCTTCTGGGGCCGCGCGCGCTCCTCCCATGTGCCGGCTGCTTCCTGCTGCTACAA CETEGAGAAGGACTTTGAGCAGTGGGCAGCAGCAGCAGCTCCTGGCCCAGCTCACACTCT TGTGGCTGGCGGCGCCCTTGGAAGGTTCTGGTGCTTCAGCTGGCGGCGGAGAGTCCA AGGGGACTGCTCACATGGCCTCAGCTTGGTGGTTTTTGAGGGGCCGCCCCCGGGCCCCTCC

GIGTTCTGCGCATTTGCTCGCCTCTCCCTCCCTCCCCTAAGCCATGCGGGGGGCCCCC

CACTAGCCCAGTTTTCAGGAAGTCAACTGGGAGGTTAGATGGGGGCCAGGGTCCCAACAGC CACTAGECCCAGETTTTCAGGAAGTCAACTGGGAGGTTAGATGGGGGCCAGGGTCCCCACAGC TACTGATGGCCCGAGCCAGGCTTGAGCTTCCTGGTGTCCCAGTCCCGGATCCCACTTGCAGAT S

CTCATGCTCCAGATAGGTGGGACAAGTTCTTTTGTCACAGTGGCTGGGCTGTGTCCTGAGG

TACTGATGGCCGGGGCCGGGTTGGCTTCCTGGTGCCGGGTCCCGGTCCCGCTTGCAGAT

N, Page

121 GaGrocardaccercordecertadeertatertecageageageageageageageageageageageageagea	ccccachécácácácácácácácácácácácácácácácácácarcacacaca	241 CTTCCGCTCGGGTTGCATGCTCGTGTCATCTTACCGGTCCAGGGTTGCAGGTAGGAAAT 300 301 GTTTGTACCTCTTTGATTGCCACCTCCTTCCCATCGCCCCTTAGGGACAGGGGTTGAG 360 	361 GGCGAGTGAGGGCTGGTCAGGCACCCAGGCCTCCTTGGGACCTGGCGCGGGGGCACCT 420 	421 GAGAGCTCCTGAAACCCCCACTTAGCTTCCGAACCTTTCTGCAAAAGCTCCTCGCTGGCTT 480 421	<pre>481 TCCTCCCCCCAATCTATGGGTCACAGGCTAACAGATCTGAGGGCAACTGCTGTGGGCTAG 540 1 </pre>	541 TGGCCAGGGCTGCACTGCCATCCCCGGGCTCTGCCACTTTAGGGCCTTCTAGAGGCGTG 600 	601 TCCTTAGGAAGTAGCTCTGAGGCATGGGCTTGCTGCTGCTGGAGGAG 660 1 <	661 TAAGGTGGGGAAGGACGGTCGGGCCCGGCCCGGCCGGCCG	721 CCAAACCATGTCCCCCAGGGAAAGGGCCAGAGTGGGAAACCTGTCCTCATGCCCTTCGTCCT 780 	781 GAGGAGCCTGAGGGGCAGCAGGGGGCCAGGGGGAAGTTTTCAGGCCTTCATCAAAGAGA 840 111111111111111111111111111111111111	<pre>841 ACAACATCCTCAGCTCCGCACCCCTCATCCTGGCACTTACCGGGTGTGACTGCC 900 841 ACAACATCCTCAGCTCCGCACCCCTCATCCTGGCTTACCGGGTGTGACTGCC 900 841 ACAACATCCTCAGCTCCGCACCCCTCATCCTGATCAGCACTTACCGGTGTGACTGCC 900</pre>	<pre>901 CTTGTCAGCATAGGATGGGCCCACCTGGCCCACTGGCTGTTTATGCCACTGATTTA 960 1 </pre>	<pre>961 TGATAGGGAATATTATCTTTGAACCCAATGAAGTGTTTTCTCCCCCATCACAAAAAAA 1020 1 </pre>	1021 AATTCTTATTTTAGTAGACATGTATTTACCAAAAATATGTACTCAATTATTGTATTTTG 	1081 GATTTTATCAATTTAAAAATTGTGGGAAATTTGTTTGCTCTTACGCCAACATAATATTGAT 1140 	1141 TTTGCCTCTTGGCTCTGAAAGCCCCAAATATTTACCGTCTAGCCGGTTACAGAAAAAGTC 1200 	
q d X O	d V	4 8 & 4	A A	vo d	70 70	vo du	vo du	VO 40	оу Dp	AQ Q	δ d	AQ P	QY Db	QY Db	QV Db	QY Db	δΥ
Db 2281 CTCTCATTGCTGGCTGGCTGCCTCGCTGGGAAAAGCTTTGCGGGGGGCTTGCTT		Db 2401 GCACGCTTACTGTGTTCTCTAATGTTCTTTAAAATGATTTCTTTC	Qy 2521 GGGGTGGTGGCCCTTGGATGGGTCGGGTGGGTGGGGGGGG	QY 2581 TGAGCTCAAGTTGTCCTACTGCCATGTTTTTGTACCTGAAATAAGGCATATTTTGCACT 2640 1	Qy 2641 TGTTACTGTACCATAGTGCGGAGGAGGTCTGTAGTGGGATTGTGGGTTAGAA 2700 Db 2641 TGTTACTGTACCATAGTGCGGAGGAGGAGGTCTGTGTGGGATTGGGTTAGAA 2700 Db 2641 TGTTACTGTACCATAGTGCGGAGGAGGAGGAGGTCTGTGGGGTTAGGATTGGGTTAGAA 2700	Qy 2701 TGCAAATAAACTCACATTGTAAGAAAAAAAAAAAAAAAA	RESULT 2 US-10-074-475-2	; Sequence 2, Application US/10074475 ; Publication No. U320030092838A1 ; GENERAL INFORMATION: ; APPLICANT: Salceda, Susana	, APPLICANT: Macina, Roberto , APPLICANT: Hu., Ping , APPLICANT: Recipon, Herve , APPLICANT: Karra, Kalpana	<pre>APPLICANT: Cafferkey, Robert APPLICANT: Sun, Yongming APPLICANT: Liu, Chenghing TILE OF INVENTION: Compositions and Methods Relating to Breast Specific</pre>	TITLE OF INVENTION: Genes and Proteins PILE REPERENCE: DEX-0313 CURRENT APPLCATION NUMBER: US/10/074,475 CURRENT FILING DATE: 2002-02-13	; PRIOR APPLICATION NUMBER: 60/268,292 ; PRIOR FILING DATE: 2001-02-13 ; NUMBER OF SEQ ID NOS: 295 ; SOFTWARE: PATENTIN VERSION 3.1	; SEQ ID NO 2 ; LENGTH: 2754 ; TYPE: DNA ; ORGANISM: Homo sapien	100.0%; Score 2754; DB 14; Length 2754; 100.0%; Pred. No. 0;	valive 0; Mismatches 0; Indels 0; Gaps AgccrcAgcrrggcAagGrgagGagGargAcrgcrgfrcccrrcgcArrrgg	Db 1 GCCAGAAGCACCTCAGCTTGGCAAGGAGGAGAGAGGAGGCGCGGTTGGCATTTGG 60 Qy 61 GGAAAACAGGCTCCCTCGGTAGGCTCGATGATCCTCTTTTGATCTTGTGTGACCTCCTGGA 120	Db 61 GGAAAACAGGCTCCCTCGGTAGCTCGATGATCCTCTTTTGATCTTGATCTTGACCTCCTGGA 120 Qy 121 GAGTGGATGACGCTGGTGGCCTTAGCTTTTCTAGACAGTGTAAATTGCACTGGGCGATGT 180

us-09-989-920-100.rnpb

Thu Dec 2 08:51:54 2004

Page 4

			·	
0y 2341 CACAGAAGAAGGGGACTGTTTGGGGTGGCTCTTGCAGGCTCCCGGTGGGTG	RESULT 3 US-09-989-920-91/c Sequence 91, Application US/09989920 Facent No. US2002012957A1 GENERAL INFORMATION: APPLICANT: Recipon, Herve APPLICANT: Recipon, Herve APPLICANT: Recipon, Herve APPLICANT: Sci-Yu APPLICANT: Sun, Yonghua TTILE OF INVENTION: Compositions and Methods Relating to Lung Specific Genes and TTILE OF INVENTION: Compositions and Methods Relating to Lung Specific Genes and TTILE OF INVENTION NUMBER: US/09/989,920 TTILE OF INVENTION NUMBER: US/09/989,920 TTILE DFPLICANTE: 2001-11-21 CURRENT FILING DATE: 2001-11-21 CURRENT FILING DATE: 2001-11-21 STOFTWARE: PatentIn Version 3.1 SCOFTWARE: PatentIn Version 3.1 SEQ ID NO 91 CLANNIN: Homo sapien US-09-989-920-91	Query Match87.1%; Score 2397.4; DB 9; Length 2399; Best Local Similarity 100.0%; Pred. No. 0; Matches 2398; Conservative 0; Mismatches 1; Indels 0; Gaps 0; Qy356 Tradaggecraferangecerageragecragecragecragecragecrageceragedaec tagge 11	Qy 416 ACCCTGAGAGCTCCTGAAACCCCCACTTAGCTTCCGGAAAGCTCCTCCT 475 Db 2339 ACCCTGAGAGCTCCTGAAACCCCCACTTAGCTTCCGGACCTTTCTGCAAAGGCTCCTCCT 2280 Qy 476 GGCTTTCCTCCCCCCCAATCTAGGGTCACAGGCTCTGGGGGGCAACTGCTGT 535 Db 2379 GGCTTTCCTCCCCCCCAATCTAGGGTCACGGCTAACGGGTCAGGGGGCAACTGCTGT 5220	536 GCTAGTGGCCAGGGCTGCCACCCCCCCGGCTCTGCCACTTTAGGGCCTTCTAGAGG 595 1
1201 TGCTGACTACTGAGCCAGACCTCATTACTACTCCTCCTGTTGGATTATTTAAGAAGGC 1261 1261 CTCGGAGCAGTAGGCCCTTTAAAGAATTAAATGACTTGGTTTGGGCTGGGCGGC	1681 Treacrretrogaccrrecadecorreroconterreconterreconcertacta 1740 1681 Treacrretrogaccrrecadecorrectorreconterreconterreconcertacta 1740 1741 Integerretrocadecorrecadecorreconterreconterreconcertacta 1740 1741 accostanterreconterreconterreconterreconterreconcertacta 1740 1741 accostanterrecontererreconterreconterrecon	2041 GTGTTCTGCGCATTTGGTCAGCTTCTCACTCGATCTCCCTAAAGCAATGGGGAGGCCCC 2100 2041 GTGTTCTGCGCATTTGGTCAGCTTCTCACTCGATCCTCCCTTAAAGCAATGGGGAGGCCCCC 2100 2041 GTGTTCTGCGCATTTGGTCAGCTTCTCACTCGATCCTCCTCTAAAGCAATGGGGAGGCCCCCC 2100 2041 GTGTTCTGCGCATTTGGTCAGCTTCACGATCTCGATCCCCTTAAAGCAATGGGGAGGCCCCCC 2100 2101 CACTAGCCCAGTTTTCAGGAAGTTCACTGGAGGGTTAGATGGGGGGGCCAGGGGTCCCACAGC 2160 2101 CACTAGCCCAGTTTTCAGGAAGTTCACTGGAGGGTTAGATGGGGGGCCAGGGGTCCCCACAGC 2160 2101 CACTAGCCCAGTTTTCAGGAAGTTCAACTGGAGGGTTAGATGGGGGGCCAGGGGTCCCACAGC 2160 2101 CACTAGCCCCAGTTTTCAGGAAGTTCAACTGGAGGGTTAGATGGGGGGCCAGGGGTCCCCACAGC 2160	2161 TACTGATGGCCGGGGCGGGGTTGGGGTTGCTGGGTGCCGGGTCCCGGGTCCCGGGT 2220 1	281 CCTCATTGCTGGCTGGGTGGGTGGGTGGCTGGCTGGCTGG
සි රි සි රි සි රි සි රි සි රි සි රි සි	් දී <u>ම ලි ම ලි ම</u> ලි ම ලි ම ම ල ම ල ම ල ම ල	o d v d v d	රී සී රී ස්	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

us-09-989-920-100.rnpb 영 옷 영 a a S CAGTGTCCTTAGGAAGTAGCTCTGAGGCATGGGTTTTTCTGCTCCTGTGAGGGCAGGTGA

1676 1079 1736 1736	ACCTTTTTGGCTTCTCTGGAGCCTGCAAGCCTCTTCCCATGTGTCCAGCTGCTCTTCCTGC 1735 	
959 1856 899	CCTCCATAAGGGTATCCTGGGCCCTGAGAATTCTGCATCTGCCATTGGAGGATGGACGGCC 900 CCTCCATAAGGGTACCCTGGGCCCTGAGAATTCTGCATCTGCCATTGGCAGGCA	
1916 839 1976 779	CTGTGGCCTTGTCCAGCCTGGTGCTCTTCACTCCAGGGGCAGCAGCAGC 1975 	
h m	TTGTGTTTTGGGCATTTGGTCAGCTTCTCACTCGATCCTCCCTAAAGCAATGGGGGG 20	
2096 659	IAAGTCAJ	
2156 599	ACAGCTACTGATGGCCGGAGCCAGGTTGAGCTTCCTGGTGTCCAGTCCCAGTTG 2215	
2216 539	GTTCTTTTGTC GTTCTTTTGTC	
2276 479	IGGGAAAAGCTTTGCGGGGGCTTGCTTGG 23. IGGGAAAAGCTTTGCGGGGCTTGCTTGG 42.	
2336 419	TTAACCACAGAAGAGAGAGAGAGAGATGGTTGGGGGGCGCCTCGCGGGGGGGG	
2396 359	AATGTTCATGTAT7 AATGTTCATGTAT7	
2456 299	AGATTGGGTGACTCTTTTCTAAAGGTGGTGGGGGGGGATAT 25 	
2516 239	GGATGGGTCAGGTGGGTGTC 	
2576 179	GCCGTTGAGCTCAAAGTTGTCCTACTGCCATGTTTTGTACCTGAAATAAAGCATATTTT 2635 	
2636	GCACTTGTTACTGTACCATAGTGCGGACGAGAAGTCTGTAGGATCTGTGCGTTGGGT 2695	

н

GTCCTQAGGAGCCCTGAGGTGGGCAGGGGGCCAGGGGGAAGTTTTCAGGCCTTCATCAA TTGATTTTGCCTCTTGGCCCTAAAGCCCCAAAATATTTTCCCGTCTGCCCGTTACGGAAA TTGATTTTGCCTCTTGGCTCTGAAAGCCCCAAAATATTTACCGTCTAGCCCCGTTACAGAAA AGTCTGCTGACTACTGAGCCAGACCTCCATTACCTCCATCCTGTTGGATTATTAAAG TGATGCGTGGAGAAGGACTTTGAGCAGTGGCGGCGGCAGCAGCAGCGCCGGCCAGCTCAC AAGTCTGCTGACTACTGAGCCAGACCTCCATTACCTCCATCCCTGTTGGATTATTTAAAG GTCCTGAGGAGCCCTGAGGTGGGCCAGGGGGCCAGGGGGAAGTTTTCAGGCCTTCATCAA S a

ഗ Page

08:51:54 2004 N Thu Dec

ug-09-989-920-100.rnpb

690

Ö

Page

524 TCCCCCAATCTATGGGTCACAGCTAACAGATCTGAGGGCAACTGCTGCTAGTGGCCAG 465 548 GCTGCACCTGCCATCCCCCGGCTCTGCCACTTTAGGGCCTTCTAGAGGCAGTGTCCTTAG 607 464 decrecaterecedererecederereceaerrradedecerteraerecertae 405 608 GAAGTAGCTCTGAGGCATGGGTTTTTCTGCTCCTGTGGGGCAGCTGGGGATAAGGTG 667 404 GAAGTAGCATGGAGGATTTTCTGCTCCTGTGCGGGCAGGCCAGCTGATGGATAAGGTG 488 TCCCCCAATCTATGGGTCACAGCTAACAGATCTGAGGCCAAGCTGCTGGCTAGTGGCCAG APPLICANT: Van 't Veer, Laura APPLICANT: Van 't Veer, Laura APPLICANT: Van de Vijver, Marc APPLICANT: Van de Vijver, Marc APPLICANT: Bernards, Rene TITLE OF INVENTION: Diagnosis and Prognosis of Breast Cancer Patients FILE REFERENCE: 9301-175-999 19.0%; Score 524; DB 15; Length 524; 100.0%; Pred. No. 1e-132; rative 0; Mismatches 0; Indels (GAATATTATCTTTGAACCCAATGAAGTGTTTTTCTCCCCCATCAC 1011 н 44 GAATATTATCTTTGAACCCAATGAAGTGTTTTTCTCCCCCCATCAC CURRENT APPLICATION NUMBER: US/10/172,118 CURRENT FILING DATE: 2002-06-14 PRIOR APPLICATION NUMBER: 60/380,770 FRIOR FILING DATE: 2002-05-14 NUMBER OF SEQ ID NOS: 2699 SEQ ID NO 2364 FUBLICATION INFORMÀTION: DATABASE ACCESSION NUMBER: Contig46362 DATABASE ENTRY DATE: 2001-06-18 Sequence 2364, Application US/10172118 Publication No. US20030224374A1 Query Match 19.0% Best Local Similarity 100.0 Matches 524; Conservative APPLICANT: Dai, Hongyue APPLICANT: He, Yudong APPLICANT: Linsley, Peter APPLICANT: Mo, Mao APPLICANT: Roberts, Chris Homo sapiens GENERAL INFORMATION: RESULT 5 JS-10-172-118-2364/C US-10-172-118-2364 524 TYPE: DNA ORGANISM: 668 728 788 848 908 968 LENGTH: g \hat{o} g q q q q \mathcal{S} q \mathcal{S} g g 8 8 g \hat{o} δ δ 3 APPLICANT: Macing Roberto APPLICANT: Recipon, Herve APPLICANT: Recipon, Herve APPLICANT: Chen, Sei-Yu APPLICANT: Chen, Sei-Yu APPLICANT: Liu, Chenghua APPLICANT: Sun, Yongming APPLICANT: Sun, Compositions and Methods Relating to Lung Specific Genes and Prot FILE REFERENCE: DSV-0291 APPLICANTION NUMBER: US/09/989,920 CURRENT FILING DATE: 2001-11-21 CURRENT FILING DATE: 2001-11-21 SPRIOR APPLICATION NUMBER: 60/252,500 PRIOR FILING DATE: 2001-11-22 NUMBER: 07TWARE: Patentin version 3.1 ASEQ ID NO 99 1717 1897 2137 ŝ 1718 TCCAGCTGCTCCTTCCTGCTAAAAGGGGGACTGCTCACAGAGTGGCCTCAGCTTGGTGGTGTTTT 1777 1778 BAGGGGGCGCCCCCCCCCTCCATAAGGGTATCCTGGGCCCTGAGAATTCTGCCATCTGCC 1837 CTGTGGCCATCCAGCCCCTGTGGCTTGTCCAGCCTCTGCACCCCTGGTGTCTTCACT 1957 1958 CCAGGGGCAGACAGCAGCAGCAGCTGCAGTTCCTTCGTGAGTAACAGTAGCAGCAGCAG 2017 GATGGGGGCCAGGTCCCACA-GCTACTGATGGCCCGAGCTTGAGCTTCCTGGTGT 2196 2197 CCAGTCCGGAT-CCCACTTGCAGATCTCATGCTCAGATAGCTGGGACAAGTTCTTTTG 2255 280 520 640 41 GTACCTTGGGGACTGAGGACCTTTTGGCTTCTCTGGAGCCTGCAAGCCTCTTCCCATGTG 100 160 220 580 401 CTGGGGCTAACAGGCTAGGCTTTGTGTTTGGTCAGCTTCAGCTCGATCCT 460 221 ATTGGAGGATGGACAGCCTCAAATGGAAGGAGGAGTCCCACGGGAGATGGGTCCGAGGTCCGA 461 CCCTAAAGCAATGGGGAGGCCCCCACTAGCCCCAGTTTTCAGGAAGTCAACTGGGGAGGTTA 581 CCAGTCCGCACTTGCAGATCTCATGCTCTCAGATAGGTGGGACAAGTTCTTTTG 1658 GTACCTTGGGGACTGAGGACCTTTTGGCTTCTCTGGAGCCTGCAAGCCTCTTCCCCATGTG 161 GAGGGGCCCCCCCCCCCCTTAAGGGTATCCTGGGCCTGAGAATTCTGCATCTGCC 1838 ATTGGAGGATGGACAGCCTCAAATGGAAGGAGTCCCACGGGAGATGGGTCCGAGGTCCGG CCCTAAAGCAATGGGGGGGGCCCCCCCCACTAGCCCCAGTTTCCAGGAAGTCAACTGGGGAGGTTA Gaps 2256 TCACAGTGCTGG-CTCTGTCCTGAGGCCTCATTGCTGGCTGGGTGTGCTC 2304 э; Length 960; Indels Aguery Match 22.2%; Score 612.4; DB 9; ABEst Local Similarity 99.4%; Pred. No. 8.4e-157; MAtches 646; Conservative 0; Mismatches 1; Sequence 99, Application US/09989920 Patent No. US20020172957A1 GENERAL INFORMATION: FEATURE: NAME/KEY: misc feature LOCATION: (716). (716) OTHER INFORMATION: a, c, g or t US-09-989-920-99 TYPE: DNA ORGANISM: Homo sapien -09-989-920-99 LENGTH: 960 1898 2078 + 2138 (2018 DĎ⁶ 90 q Q δ q gD િ ઠે δ_{i} Š 8 q d đ \mathcal{S} <u>q</u> ∂ ð. 9 δ . <u>.</u> ų, ÷.

345

:0 547

Gaps

ö

GCCAAGGACGGTCAGTGCTTTGGGCCCAGGCCTGGCCGATGGGGGAAACCCAAACC 727

ATGTCCCCCCAGCGAAGGGCCAGAGTGGGAACCTGTCCTCATGCCCTTCGTCCTGAGGAGC 787 284 Arcrecedecedecedecedecededecededecederecerenteceretecededec 225

165 CCTCAGGTGGGCAGCAGGGGCCAGGGGGGGGGGAGTTTTCAGGCCTTCATCAAGAGGAACAACAT 847 corcaderecedencerterrereaseaserratedeservation 907 224 CCTGAGGTGGGCAGGGGGCCAGGGGGAGAGTTTTCAGGCCTTCATCAAGAGAAGAACAACAT

164 concademented accorrent concurrence active a GCTAGCATACGGTGGGCCCACCTGGCCCACTGGCTGTTTATGCCACTGATTATGATAGG 967

104 GCTAGCATACGGTGGGCCCACTGGCCCACTGGCTGTTTATGCCACTGATTATGATAGG 45

2004
:54
08:51:
2
Dec
$\mathbf{T}\mathbf{h}\mathbf{u}$
~5

US-10-074-475-1 Sequence 1, Application US/10074475 Publication No. US2003092898A1 Sequence 1, Application US/10074475 Publication No. US2003092898A1 APPLICANT Salead, Suama APPLICANT Macina, Roberto APPLICANT Recipon, Herve APPLICANT Recipon, Herve APPLICANT Salead, Subma APPLICANT Salead, Subma APPLICANT Salead, Subma APPLICANT Salead, Subma APPLICANT Salead, Subma APPLICANT Salead, Subma APPLICANT Cafferkey, Robert APPLICANT Cafferkey, Robert APPLICANT Cafferkey, Robert APPLICANT Cafferkey, Robert APPLICANT Cafferkey, Robert APPLICANT Cafferkey, Robert APPLICANT Cafferkey, Subma APPLICANT Cafferkey, Subma APPLICANT Sun, Yongmung APPLICANT Cafferkey, Subma APPLICANT Sun, Yongmung APPLICANT Cafferkey, Salead TITLE OF INVENTION CHERDING APPLICANT Sun, Yongmung APPLICANT Salead APPLICANT SALEAD	CTACAAAGGGGGCCTCACAGGCCTCAGGTTGGTGGTTTTTGAGGGGCCGCCCCCGG 17 [QY 1795 CCCTCCATBAGGGTATCCTGGGGCTGAGAATTCTGCATTGGA-GGATGGACG 1853 DD 72 CCCTCCATBAGGGTATCCTGGGGCCTGAGAATTCTGCATTGGA-GGATGGACG 1853 DD 72 CCCTCCATBAGGGTATCCTGGGGCCTGAGAATTCTGCATTGGCATTGGATGGA	Qy 1854 CCTCAAATGGAAG-GAGTCCCACGGGAGATGGGTCCGAGGTCC-GGCTGTGGCCATCCAG 1911 Qy 1854 CCTCAAATGGAAG-GAGTCCCACGGGAGATGGGTCCGAGGTCCGAGGTCCGAGGCCATCCAG 1911 Db 132 CCTCAAATGGAAGGTCCCCAGGGAGATGGGAGGTCCGAGGTCCGAGGTCCGAGGCTCCAGGCCATCCAG 191	Qy 1912 CCCCCTGTGGGCTTGTCCAGCCTCTGTGCACCCCTGGTGTCTTCACTCCAGGGGCAGACG 1971 Db 1912 CCCCCTGTGGCTTGTCCAGCCTCTGTGCACCCCTGGTGTCTTCACTCCAGGGGCAGACG 1971 Db 192 CCCCCTGTGGCTTGTCCAGCCTCTGTGCACCCCTGGTGTCTTCACTCCAGGGGCAGACGS 251	QY 1972 CAGCCACTGCAGTTCCTTTCTCGTQAG-TAACAGTAGCAGCTGGGGGCTAACAG 2030 	Qy 2031 GCTAGGCTTTTGGTCGCGCATTTGGTCAGCTCTCCACTCGATCCTCCTAAAGCAATG 2090 Db 1	QY 2091 GGGAGGCCCCACTAGCCGAGTTTTCAGGAAGTCAACTGGGAGGGTTAGATGGGGGGCCAG- 2149 	Qy 2150 GGTCCCACAGGTAGATGGCCCGAGGCTGAGGTTCCTGGTGCGGGT 2207 Db	Qy 2208 CCCACTTGCAGATCTCATGCTCTCAGATAGGTGGGGACAAGTTCTTTTGTCACAGTGCTGG 2267 Db 492 CCCACTTGCAGATCTCATGCTCTCAGATAGGTGGGGACAAGTTCTTTTGTCACAGTGCTGG 551	QY 2268 CTCTGTCCTGAGGCCTCATTGCTGGCTGG 2296 Db 552 [RESULT 8
RESULT 6 US-10-342-887-2364/C US-10-342-887-2364/C Sequence 2364, PpDitation US/10342887 Publication No. US20040058340Al APPLICANT: NPOWARTICN: APPLICANT: He, Yudoryus APPLICANT: He, Yudoryus APPLICANT: Mailey, Peter S. APPLICANT: None t' Veer S. APPLICANT: Senards, Sand Frognosis of Breast Cancer Patients TILE OF TIME OF TON NUMBER: 60/380,710 PRIOR APPLICATION NUMBER: 70,710 PRIOR APPLICATION NUMBER: 60/380,710 PRIOR APPLICATION NUMBER: 70,710 PRIOR APPLICATION NUMBER: 70,710 PRIOR APPLICATION NUMBER: 70,710 PRIOR APPLICATION NUMBER: 70,710 PRIOR APPLICATION NUM	Cuery Match Query Match Best Local Similarity 100.0%; Score 524; DB 16; Length 524; Best Local Similarity 100.0%; Pred. No. 1e-132; Matches 0; Gaps 0; Matches 524; Conservative 0; Mismatches 0; Indels 0; Gaps 0;	Qy 48B TCCCCCAATCTATGGGTCACAGGTAACAGATCTGAGGGGCAACTGCTGGCTAGTGGCCAG 547 Db 51 1 <t< td=""><td>Qy 548 GCCTGCCATCCCCGGCTTTAGGGCCTTTAGGGCCATCTAGAGGCAGTGCTTAG 607 Db 1</td><td>Qy 608 Gaagtagetreagegetreagegetreagegegegegegegegegegegegegegegegegegeg</td><td>Qy 668 GGGAAGGACGGTCAGTGCTTGGGCCCCAGCTGGCCGACGATGGGGAAAACCAAAACC 727 Db 111111111111111111111111111111111111</td><td>Qy 728 ATGTCCCCAGGGAAGGGCCAGAGGGCAGGAACCTGTCCTCATGCCCTTCGTCCTGAGGAGC 787 Db 284 ATGTCCCCCAGGGGAAGGGCCAGAGGGGGAACCTGTCCTCATGCCCTTCGTCCTGAGGAGC 225</td><td>Qy 788 CCTGAGGFGGGGCAGCAGGGGCCAGGGGAAGTTTTCAGGCCTTCATCAAAGAGAACAACAT 847 Db 224 CCTGAGGTGGGGGGGGGGGGGGGGGGGGAGGTTTTCAGGCCTTCATCAAAGAGAACAACAT 165</td><td>QY 848 CCTCAGCTCCGCACCCCTCATCCTGTATCAGCACTTACCGGGTGTGGACTGCCCTTGTCA 907 D 1</td><td>QY 908 GCTAGCATACGGTGGGCCCACCTGGCCCACTGGCTGTTATGCTGATTATGATAGG 967 D 104 GCTAGCATACGGTGGGCCCACCTGGCCCACTGGCTGTTATGCCACTGATTATGATAGG 967</td><td>Qy 968 GAATATTATCTTTGAACCCAATGAAGTGTTTTCTCCCCCATCAC 1011 Db 1 </td><td>RESULT 7</td></t<>	Qy 548 GCCTGCCATCCCCGGCTTTAGGGCCTTTAGGGCCATCTAGAGGCAGTGCTTAG 607 Db 1	Qy 608 Gaagtagetreagegetreagegetreagegegegegegegegegegegegegegegegegegeg	Qy 668 GGGAAGGACGGTCAGTGCTTGGGCCCCAGCTGGCCGACGATGGGGAAAACCAAAACC 727 Db 111111111111111111111111111111111111	Qy 728 ATGTCCCCAGGGAAGGGCCAGAGGGCAGGAACCTGTCCTCATGCCCTTCGTCCTGAGGAGC 787 Db 284 ATGTCCCCCAGGGGAAGGGCCAGAGGGGGAACCTGTCCTCATGCCCTTCGTCCTGAGGAGC 225	Qy 788 CCTGAGGFGGGGCAGCAGGGGCCAGGGGAAGTTTTCAGGCCTTCATCAAAGAGAACAACAT 847 Db 224 CCTGAGGTGGGGGGGGGGGGGGGGGGGGAGGTTTTCAGGCCTTCATCAAAGAGAACAACAT 165	QY 848 CCTCAGCTCCGCACCCCTCATCCTGTATCAGCACTTACCGGGTGTGGACTGCCCTTGTCA 907 D 1	QY 908 GCTAGCATACGGTGGGCCCACCTGGCCCACTGGCTGTTATGCTGATTATGATAGG 967 D 104 GCTAGCATACGGTGGGCCCACCTGGCCCACTGGCTGTTATGCCACTGATTATGATAGG 967	Qy 968 GAATATTATCTTTGAACCCAATGAAGTGTTTTCTCCCCCATCAC 1011 Db 1	RESULT 7

us-09-989-920-100.rnpb

2 08:51:54 2004

1275 ÷, 1276 C-TTTTTTAAAAGAATAAAATGACTTGGGTTTGCGCTTGGAAGCAGGGGAAGCATTCAGAT 1334 1335 GAGCGGTTTTCTGCATTAACCCTGCCTATCACGCATCTCGTGTCCTGTGTCGCTGGCGAGC 1394 1454 1455 GGGAATGCAGAGCCCTTTGCTTTCCTTGTTGCGGCCTGCTTCCTGTTCCTGGGGGACCCGC 1514 1515 TGGGCCTTTGGTCTGCATCCCCTGGCCAGGTCCCTCAGGGTTGATGCGTGGAGAAGGACT 1574 248 CTTTTTTTAAAGAATAAAATGACTTGGTTTGGCTTGGAAGCAGGGGGAAGCATTCAGAT 128 368 308 68 9 CAGACCTCCATCCCCTGTTGGATTATTTAAGAAAGCCTCAGACAGTAAGGG 189 CCCCCTTGGAAGSTTCTGGTGCTTCAGCTGGCTGCTGCAGAGGTCCCGCCCCGGCTCGTGGT 1395 CCCCCTTGGAAGGTTCTGGTGCTTCAGCTGGCTGCTGCAGAGTCCACCCGGCGTGGTGGT 249 GGGAATGCAGAGCCCTTTGCTTCCTTGCTGGCCTGCTTCCTGGGGGACCCGC Gaps ; ; ; APPLICANT: Dirkson, Mark APPLICANT: Dirkson, Mark APPLICANT: Labat, Ivan TITUE OF INVENTION: Lee Milliam TITUE OF INVENTION: Lee Milliam TITUE OF INVENTION: XVI CHILR REFERENCE: 2300-1652CON CURRENT FPLICATION NUMBER: US/10/609,021 CURRENT FPLICATION NUMBER: 00/192,583 CHRRENT FILING DATE: 2000-03-26 PERIOR FILING DATE: 2000-03-28 PERIOR FILING DATE: 2000-03-28 PERIOR FILING DATE: 2000-03-27 PERIOR FILING DATE: 2001-03-27 PERIOR PERIOR PERIOR FILING DATE: 2001-03-27 PERIOR Score 357.4; DB 16; Length 395; Pred. No. 4.2e-87; 0; Mismatches 11; Indels 1; TTGAGCAGTGGTGGGCAGCAGTGGCCT 1601 369 Treaccacrecteccaccaccaccri 395 Escobedo, Jaime Innis, Michael A. Garcia, Pablo Dominiguez Sudduth-Tinger, Julie Reinhard, Christoph Sequence 176, Application US/10609021 Publication No. US20040086913A1 GENERAL INFORMATION: Randazzo, Filippo Kennedy, Giulia C. Pot, David Kassam, Altaf 13.0%; 96.9%; APPLICANT: Williams, Lewis T. Lamson, George Drmanac, Radoje Dickson, Mark Query Match Best Local Similarity 96.9' Matches 375; Conservative UR ORGANISM: Homo sapiens US-10-609-021-176 He, Zhijun US-10-609-021-176 LENGTH: 395 1575 ' 69 APPLICANT: TYPE: DNA APPLICANT: APPLICANT: Thu Dec APPLICANT: APPLICANT: APPLICANT YO. qq ð a 8 q q qq 2 gQ ∂ δ -

Sequence 90, Application US/09989920 Patent No. US20020172957A1 GENERAL INFORMATION: PAPLICANT: Macina, Roberto APPLICANT: Recipon, Herve APPLICANT: Recipon, Herve APPLICANT: Chen, Sei Yu APPLICANT: Chen, Sei Yu APPLICANT: Chen, Sei Yu APPLICANT: Sun, Yongming APPLICA ö 1903 GCCATCCAGCCCCTGTGGCTTGTCCAGCCTCTGTGCACCCCTGGTGTCTTCACTCCAGG 1962 ÷, 1723 CIGCICTICCTGCTACAAGGGGACTGCTCACAGTGGCCTCAGCTTGGTGGTTTTGAGGG 1782 1783 GCCGCCCCCCCCCCTAAGGGTATCCTGCGCCTGAGAATTCTGCATCTGCCATTGG 1842 1843 AGGATGGACAGCCTCAAATGGAAGGAGTCCCACGGGAGATGGGTCGGAGGTCCGGCTGTG 1902 2381 CCTCCCCGTGCTGGGTGGAAGCACGGTTACTGTGTTCTCTCTAATGTTCATCTATTTAAAAT 2440 61 GCCCCCCCCCCCCTCATAAGGGTATCCTGGGCCTGAGAATTCTGCATCGCCATTGG 120 121 AGGATGGACAGGCTCAAATGGAAGGAGTCCCACGGGAAGATGGGTCCGAGGTCCGGCTGTG 180 181 éccarécecérereresecriéresécéréresécéréségéreséréreségéreségés 240 CrectCrtCcrectAcAAAGeeGACrectCACAGTeeCCrCaGCTreGTerTreAGee 60 1963 GCCAGACAGCAGCCACTGCAGTTCCTTCCTTCGTGAGTAACAGTAGTGATAGCAG 2017 0; Gaps 241 GGCAGACAGCAGCACTGCAGTTCCTTCTTCGTGAGTAACAGTAGTGATAGCAG 295 Gaps 5; 8.1%; Score 224.4; DB 9; Length 251; 98.8%; Pred. No. 9.6e-51; 10.7%; Score 295; DB 15; Length 295; 100.0%; Pred. No. 4.6e-70; trive 0; Mismatches 0; Indels APPLICANT: SWITZEY, AND TITLE OF INVENTION: COMPOSITIONS AND METHODS FOR THE THERAPY FITTLE OF INVENTION: COMPOSITIONS AND METHODS FOR THE THERAPY FILLE REFERENCE: 210121.568 CURRENT APPLICATION NUMBER: US/10/116,712 CURRENT FILING DATE: 2002-04-07 CURRENT FILING DATE: 2002-04-07 SOFTWARE: FASTSEQ for Windows Version 4.0 1; Indels Pred. No. 9.6e-51; 0; Mismatches 1. APPLICANT: Bangur, Chaitanya S. APPLICANT: Switzer, Ann Publication No. US20030194764A1 Query Match 10.7% Best Local Similarity 100.0 Matches 295; Conservative Matches 237; Conservative TYPE: DNA ORGANISM: Homo sapiens TYPE: DNA ORGANISM: Homo sapien Query Match Best Local Similarity GENERAL INFORMATION: -920-90/0 US-10-116-712-429 US-09-989-920-90 SEQ ID NO 429 LENGTH: 295 251 SEQ ID NO 90 LENGTH: RESULT 10 US-09-989 qq đ 8 8 20 a q 8 8 g 3

" "RESULT 9

", Sequence 429, Application US/10116712 US-10-116-712-429

251 concocordorecadocadocadocariacrioricricitalicricitation 192

q

2 08:51:54 2004 🖉 Thu Dec

			~ ~ ~ ~ ~ ~ ~ ~	NAMA NAMA FEAN NAMA NAMA NAMA	Query Best I Matche Ov	5 A	QY
0y 2441 GATTTCTTTCTAAGATGTAACCTCCACACCTTTCTCCAGATTGGGTGACTCTTTCTAA 2500 191 131 131 132 0y 2501 131 132 0y 2501 131 132 0y 2561 36716667167676667666676766677666776367636	; LENUTH: 161 ; TYPE: DNA ; ORGANISM: Homo sapiens US-10-102-524-1276 Query Match 5.8%; Score 161; DB 15; Length 161; Rest Local Similarity 100.0%; Pred. No. 1.88-33; Matches 161; Conservative 0; Mismatches 0; Indels 0; Gaps 0;	QY 1727 TCTTCCTGCTACAAAGGGACTGCTCACGGGGGCCC 1786 Db 161 TCTTCCTGCTACAAAGGGGACTGCTCACGGGGCCC 1786 Db 161 TCTTCCTGCTACAAAGGGGACTGCTCACGGGGCCC 102 QY 1787 CCCCCCGGGCCCTCCAAGGGGCCTCAGGGCCTGAGGACGCG 102 QY 1787 CCCCCCGGGCCCTCCATAGGGGCCTGAGGACTTGCAATGGCGCGG 1846 Db 101 CCCCCCGGGCCCTCCATAGGGGCCTGAGGACTTGCAGGGCCTGAGGGG 42	Qy 1847 TGGACAGCCTCAAATGGAAGGAGTCGCGGGGGGAGATGGGTC 1887 Db 41 TGGACAGCCTCAAATGGAAGGAGTCCCCACGGGGGGGGGG	US-09-854-867-10 US-09-854-867-10 Sequence 10, Application US/09854867 Sequence 10, Application No. US2030224356A1 GENERAL INORMATION: GENERAL: INORMATION: APPLICANT: ADAN, KNOLL H APPLICANT: NORAN, PETER K TITLE OF INVENTION: SINGLE COPY GENOMIC HYBRIDIZATION PROBES AND METHOD OF GENERATING TITLE OF INVENTION: SINGLE COPY GENOMIC HYBRIDIZATION PROBES AND METHOD OF GENERATING FILE REFERENCE: 30307	CURRENT FILING DATE: 2003-05-08 NUMBER OF SEQ ID NOS: 613 SOFTWARE: Patentin version 3.1 SEQ ID NO 10 TRNGTH: 2285	TYPE: DNA DRANTSM: Homo sapiens	: FEATURE: : NAME/KEY: repeat_region

MAR/KEY: misc_feature COATTON: (377). (377) THER INFORMATION: n is a, c, g or t AME/KEY: misc feature OCATTON: (580) THER INFORMATION: n is a, c, g or t EATURE: MAR/KEY: misc feature OCATTON: (651). (651) THER INFORMATION: n is a, c, g or t EATURE: MAR/KEY: misc feature COATTON: (654). (664) THER INFORMATION: n is a, c, g or t EATURE: MAR/KEY: misc feature OCATTON: (725) THER INFORMATION: n is a, c, g or t EATURE: MAR/KEY: misc feature OCATTON: (725). (725) THER INFORMATION: n is a, c, g or t EATURE: MAR/KEY: misc feature OCATTON: (725). (1095) THER INFORMATION: n is a, c, g or t EATURE: MAR/KEY: misc feature OCATTON: (1257). (1151) THER INFORMATION: n is a, c, g or t EATURE: MAR/KEY: misc feature OCATTON: (1251). (1151) THER INFORMATION: n is a, c, g or t EATURE: MAR/KEY: misc feature OCATTON: (1251). (1151) THER INFORMATION: n is a, c, g or t EATURE: MAR/KEY: misc feature OCATTON: (1251). (1351) THER INFORMATION: n is a, c, g or t EATURE: MAR/KEY: misc feature OCATTON: (1351). (1351) THER INFORMATION: n is a, c, g or t EATURE: MAR/KEY: misc feature OCATTON: (1351). (1351) THER INFORMATION: n is a, c, g or t EATURE: MAR/KEY: misc feature OCATTON: (1365). (1365) THER INFORMATION: n is a, c, g or t EATURE: MAR/KEY: misc feature OCATTON: (1365). (1365) THER INFORMATION: n is a, c, g or t EATURE: MAR/KEY: misc feature OCATTON: (1365). (1365) THER INFORMATION: n is a, c, g or t EATURE: MAR/KEY: misc feature OCATTON: (1365). (1365) THER INFORMATION: n is a, c, g or t EATURE: MAR/KEY: misc feature OCATTON: (1365). (1365) THER INFORMATION: n is a, c, g or t EATURE: MAR/KEY: misc feature OCATTON: (1365). (1365) THER INFORMATION: n is a, c, g or t EATURE: MAR/KEY: misc feature OCATTON: (1365). (1365). THER INFORMATION: n is a, c, g or t EATURE: MAR/KEY: misc feature OCATTON: (1365). (1370) THER INFORMATION: n is a, c, g or t EATURE: MAR/KEY: misc feature OCATTON: (1365). (1370) THER INFORMATION: n is a, c, g or t EATURE: MAR/KEY: misc feature OCATTON: (1365). (1351). Z/KEY: misc feature ATTON: (1990). (1990) BF INFORMATION: n is a, c, g or t 54-867-10 ч ų ц ц ц ц ч ч ч ч ч ч ų ч ATION: (1)..(2285) ER INFORMATION: cheshire FURE:

1017 AAAAATTCTTATTTTTAGTAGACATGTATTTTACCAAAAATATGTGTACTCAATTATTGTAT 1076 Match 3.4%; Score 93.6; DB 10; Length 2285; Local Similarity 67.3%; Pred. No. 2.5e-14; es 183; Conservative 1; Mismatches 70; Indels 18; Gaps

. M

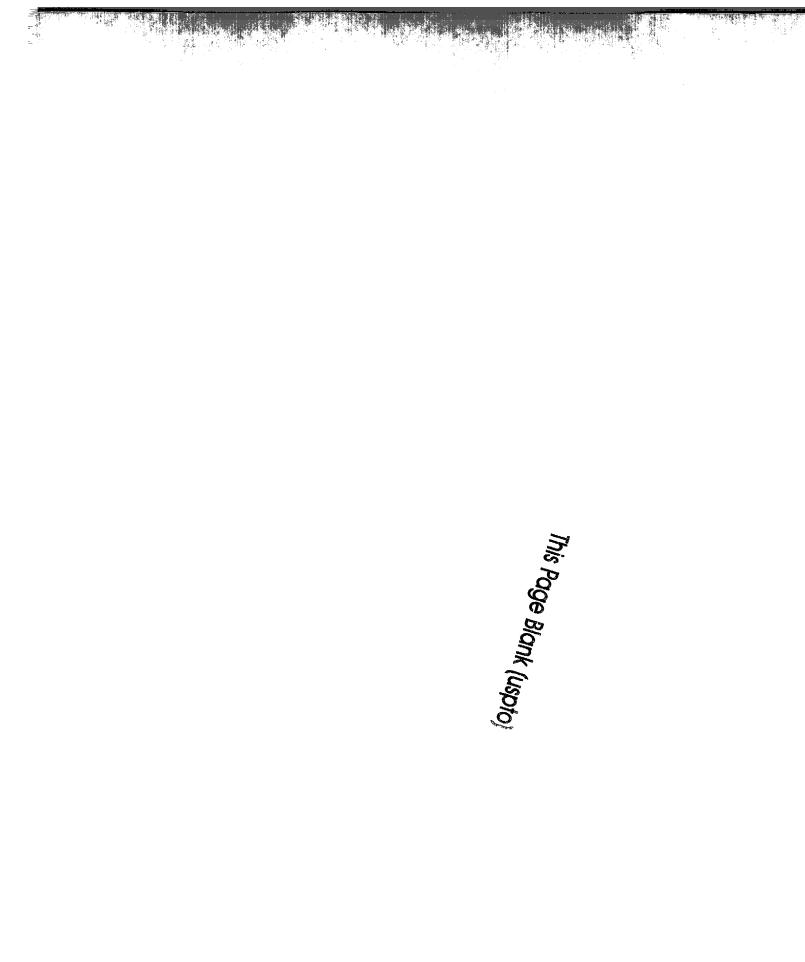
Thu Dec 2 08:51:54 2004

20. 20. us-09-989-920-100.rnpb

Page 10

i...hli

 $\{\mu, \nu\}$


	RESULT 13 US-09-764-879-292/c Fequence 292, Application US/09764878 Fequence 292, Application US/09764878 Ference No. US20020090615A1 GENERAL INFORMATION: APPLICATIVE NORMATION: APPLICATION UNBER: US/09/764,878 FILE REFERENCE: PA121 CURRENT FILING DATA removed - consult PALM or file wrapper FILE REFERENCE: 2001-01-17 FILE REFERENCE: PA121 CURRENT FILING DATA removed - consult PALM or file wrapper FILE REFERENCE: 2001-01-17 FILE REFERENCE: 2001-01-17 FILE REFERENCE: PA121 FILE REFERENC	2.7%; Score 75; DB 9; Length 32038; larity 65.3%; Pred. No. 1.5e-08; Conservative 0; Mismatches 60; Indels 16; Gaps 2;	AATTATT AATTATT	8 15-	gtatctačataacaátctcagttttacctcttagcccacaaagcctaaaatatttactat 28700 ctagcccgttacagaaaagtctgctgactactggccaggcc 1221 	RESULT 14 US-10-079-854-292/c US-10-079-854-292/c Sequence 292, Application US/10079854 Publication No. US2003054368A1 GENERAL INFORMATION GENERAL INFORMATION GENERAL INFORMATION TITLE OF INVENTION: Nucleic Acids, Proteins, and Antibodies TITLE OF INVENTION: NUCLEIC Acids, Proteins, and Antibodies FILE REFERENCE: PAI21C1 TITLE OF INVENTION: NUCLEIC Acids, Proteins, and Antibodies FILE REFERENCE: PAI21C1 CURRENT FELLING DATE: 2002-02-22 Prior Application removed - See File Wrapper or Palm NUMBER OF SEQ ID NOS: 428 SOFTWARE: Patentin Ver. 2.0 SEQ ID NO 292 TENGTH: 32038 TENGTH: 32038 TRPE: DNA ORGANISM: Homo sapiens
artccattcttct artccattcttct trtgaattttaccattcttct tll tll <td><pre>A-292/c B-292/supplication UFORMATION: US200209615P WFORMATION: US2002015P UFORMATION: Nucl INVENTION: Nucl INVENTION: Nucl SRENCE: PA121 APDLICATION NUME SRENCE: PA121 INVENTION UME SRENCE: PA121 INVENTION UME SRENCE: PA121 INVENTION CAL 2 20038 VA HOMO SAPIENTS VA HOMO SAPIENTS VA HOMO SAPIENTS</pre></td> <td>y Match Local Similarity 6 thes 147; Conservati</td> <td>AAAAAAATTT AAATATTTAATTC Gwarterteattt</td> <td>GLATTITGGATTI GTTTTGATTI CAACAT</td> <td>gtatctačátaác ctagecegttacz ctggeeerttatr</td> <td>54-292/c 592, Application on No. US2003005 NFORMATION: Nucl T: ROSEN et al. T: ROSEN et al. T: ROSEN et al. T: RUSEN PAI2ICI ERENCE: PAI2ICI ERENCE: PAI2ICI ERENCE: PAI2ICI ERENCE: PAI2ICI ERENCE: PAI2ICI FILING DATE: 20 plication remove FILING DATE: 20 plication Ver. Patentin Ver. 292 32038 M: Homo sapiens M: Homo sapiens</td>	<pre>A-292/c B-292/supplication UFORMATION: US200209615P WFORMATION: US2002015P UFORMATION: Nucl INVENTION: Nucl INVENTION: Nucl SRENCE: PA121 APDLICATION NUME SRENCE: PA121 INVENTION UME SRENCE: PA121 INVENTION UME SRENCE: PA121 INVENTION CAL 2 20038 VA HOMO SAPIENTS VA HOMO SAPIENTS VA HOMO SAPIENTS</pre>	y Match Local Similarity 6 thes 147; Conservati	AAAAAAATTT AAATATTTAATTC Gwarterteattt	GLATTITGGATTI GTTTTGATTI CAACAT	gtatctačátaác ctagecegttacz ctggeeerttatr	54-292/c 592, Application on No. US2003005 NFORMATION: Nucl T: ROSEN et al. T: ROSEN et al. T: ROSEN et al. T: RUSEN PAI2ICI ERENCE: PAI2ICI ERENCE: PAI2ICI ERENCE: PAI2ICI ERENCE: PAI2ICI ERENCE: PAI2ICI FILING DATE: 20 plication remove FILING DATE: 20 plication Ver. Patentin Ver. 292 32038 M: Homo sapiens M: Homo sapiens
2076 1077 2134 1123 2194 1181 2254	RESULT 13 US-09-764-878-2 Sequence 292, Fatent No. US GENERAL INFOR TITLE OF INV FILE REFEREN FRENT FILL FLENT FILL FLENTF FILL FLENTHE: P SOFTWARE: P	/ Match Local S les 147	1013 28877 2013	10/3 28817 1126	b 28759 У 1179 b 28699	US-10-079-854- US-10-079-854- Sequence 292 Esquence 292 GRNERALINFO APPLICANT: APPLICANT: APPLICANT: TILE ROFIN FILE ROFINA FILE ROFINA FILE ROFINA FILE ROFINA FILE ROFINA FILE ROFINA FILE PETOR FILE PETOR SOFTWARE: SOFTWARE: SOFTWARE: DA SOCTWARE: DA
ස් ම ම ම ම ම	ದೇವರ್ ಸ್ಪಾರ್ br>ದೇವರ್ ಸ್ಪ್ರಾಂಗ್ ಸ್ಪ್ರಾಂಗ್ ಸ್ಪ್ರಾಂಗ್ ಸ್ಪ್ರಾಂಗ್ ಸ್ಪಾರ್ ಸ್ಪಾರ್ ಸ್ಪಾರ್ ಸ್ಪಾರ್ ಸ್ಪಾರ್ ಸ್ಪಾರ್ ಸ್ಪಾರ್ ಸ್ಪಾರ್ ಸ್ಪಾರ್ ಸ್	- 1910 - 2010 Tana -	හි සි දි	585	a vo a	

US-10-079-854-292 Query Match 2.7%; Score 75; DB 14; Length 32038; Best Local Similarity 65.9%; Pred. No. 1.5e-08; Matches 147; Conservative 0; Mismatches 60; Indels 16; Gaps 2;	1013 AAAAAAAAATTUTTATTAGTAGAGATGTATTTACCAAAAATATGTAGTAGTATTATT 107 	Qy 1073 GRATTTTGGATTTTATCATTTAAAAATTGTGGGAAATTTGTTTG	Qy 1126 CAACATAATATTGATTTGCCTCTTGGCTCTGAAAGCCCCAAATATTTACCGT 1178 Db 28759 GTATCTACATAATATCTCTCTTAGCCCCACAAAATATTTACTAT 28700	QY 1179 CTAGCCGTTACAGAAAAAGTCTGCTGACTACTGAGCCAGACC 1221 	RESULT 15 US-09-364-149 Sequence 498, Application US/09984429 Fequence 498, Application US/09984429 Fequence 498, Application US/09984429 TITLEART FROMMATION: 53 Human Secreted Proteins TITLE REFERENCE: P20182 CUREENT APPLICATION NUMBER: 05/09/984,429 FRIOR APPLICATION NUMBER: 05/09/984,429 PRIOR APPLICATION NUMBER: 05/09/984,429 PRIOR APPLICATION NUMBER: 05/01443 PRIOR FILING DATE: 2000-11-01 PRIOR FILING DATE: 2000-11-01 PRIOR FILING DATE: 2000-11-01 PRIOR FILING DATE: 09/288,143 PRIOR FILING DATE: 1997-10-09 PRIOR APPLICATION NUMBER: 06/061,529 PRIOR FILING DATE: 1997-10-09 PRIOR PRIOR PRIOR PRIOR PRIOR PRIOR PRIOR PRIOR FILING DATE: 1997-10-09 PRIOR PRIOR	Query Match 2.7%; Score 75; DB 11; Length 32844; Best Local Similarity 65.9%; Pred. No. 1.5e-08; Matches 147; Conservative 0; Mismatches 60; Indels 16; Gaps 2;	Qy 1013 AAAAAAAATTCTTATTTTTAGTAGACATGTATTTTCCCAAAAAATATGTACFCCAATTATT 1072 Db 3968 AAATATTTAATTCTTTTGTAGTAAGCCCGTATTACAAAAAAAA	Qy 1073 GTATTTTGGATTTAAAAATTGTGGAAATTTGTTTGCTCTTACGC 1125 Db 4028 GTTTGAATTTTGCCAATAAAATTTCGTCCAAATTTTATTCTCTCTC	1
--	--	--	--	---	---	--	--	--	---

4086 GTATCTACATAACAATCTCAGTTTTACCTCTTAGCCCACAAAGCCTAAAATATTTACTAT 4145

8 2 8

Search completed: November 29, 2004, 15:19:46 Job time : 2343 secs

<pre>56.2 2.0 240825 4 AAF24497 56.2 2.0 240825 6 ABQ81802 55.8 2.0 147419 6 ABC81802 55.8 2.0 147419 6 ABC83577 51.4 1.9 75033 12 ADP66763 50.8 1.8 2194 10 ADA52599 50.8 1.8 2194 10 ADA52599 50.8 1.8 2137 6 AAL49931 50.6 1.8 9544 4 AAL04799 50.6 1.8 9544 4 AAL04799 50.6 1.8 9544 4 AAL04799 50.6 1.8 9544 4 AAL04799</pre>	31 50.6 1.8 32474 4 AbL/703 Abl	. ALIGNMENTS	<pre>RESULT 1 RESULT 1 RESULT 1 RESULT 1 RESULT 1 RESULT 2 RESULT</pre>
GenCore version 5.1.6 Copyright (c) 1993 - 2004 Compugen Ltd. OM nucleic - nucleic search, using sw model Run on: November 29, 2004, 08:42:07 ; Search time 1281 Seconds (without alignments)	Million cell upo taaaaagatgoggoo 8269772	ocessing	eeqn1358 eqn2338e seqn1358e seqn2000 seqn2000 seqn20002 seqn2002 seqn2002 seqn2002 seqn2002 seqn2002 seqn2002 seqn2002 seqn2002 sequ2000 sequ2000 sequ2000 sequ2000 sequ2000 s

us-09-989-920-100.rng

 $\frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}$

. .

Page 2

 FIAINPAGGAMENTATION CONTRACTOR TO ACTION TO ACTION CONTRACTOR AND AND AND AND ACTION TO ACTION AND ACTION AN
\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
[Freentian, Serie the stay, production of transports antalis and production codes in Lug y prestry. Production of transports antalis and production sections 214: By: 57.4, 17.0, 07.13 at 71.0, 10.0 Other: Service 214: By: 57.4, 17.0, 17.4, 17.0, 10.0 Other: Service 214: By: 57.4, 17.0, 17.0, 17.4, 17.0, 10.0 Other: Service 214: By: 57.4, 17.0, 17.0, 17.4, 17.0, 10.0 Other: Service 214: By: 57.4, 17.0, 17.0, 17.4, 17.0, 10.0 Other: Service 214: By: 57.4, 17.0, 17.0, 17.4, 17.0, 10.0 Other: Service 214: By: 57.4, 17.0,

. ~

. Thu Dec 2 08:51:53 2004

Ţ

us-09-989-920-100.rng

Page 3

XX PI Salceda S, Macina RA, Hu P, Recipon H, Karra K, Cafferkey R; PI Sun Y, Liu C; XX DR WFI; 2002-657582/70 XX We breast specific nucleic acids and proteins, useful for identifying, PT diagnosing, monitoring, staging, imaging, and treating breast cancer and PT non-cancerous disease states in breast tissue, and in gene therapy. XX Claim 1; Page 148-150; 36700; English.	The present invention provides human breast specific coding proteins. These can be used in the diagnosis and treatment cancer and non-cancerous diseases of the breast. The presen a coding sequence of the invention Sequence 2754 BP; 557 A; 720 C; 753 G; 724 T; 0 U; 0 Other;	Query Match 100.0%; Score 2754; DB 6; Length 2754; Best Local Similarity 100.0%; Pred. No. 0; 0; Indels 0; Gaps 0; Matches 2754; Conservative 0; Mismatches 0; Indels 0; Gaps 0; 0; Indels 0; Gaps 0; QY 1 GCCAGAAGCAGCCTCAGCTTGGCAAGGAGGAGGAGGAGGAGGAGGCAGTTGGG 60 Db 1 GCCAGAAGGAGCCTCAGGCTTGGCAAGGAGGAGGAGGAGGAGGAGGAGGCGCTGGGATTAGG 60 QY 61 GGCAAAAACAGGCGTGGGAGGAGGAGGAGGAGGAGGAGGAGGCCCCTGGCATTAGGAGGG QY 61 GCCAAAAACAGGCCCCGGAGGAGGAGGAGGAGGAGGAGGCCCCTGGAATTAGG	<pre>61 GENERALGEGETCCCTGGGTAGCTAGCTGTTTTTCTTTTATCTTTTTGATCTTGTGTGA 61 GAGTGGATGGCTGCGGGGGGGGGGGGGGGGGGGGGGGGG</pre>	191 CCCCAGAGCAGGGCAAGGTCTCTAGAGCGGGGTTCTCCCACAGGGTTCCCACAGGCA 181 CCCCAGAGCCAGGGCTTCTAGAGCGGGGTCTCCCCACATGACTGGCTTCACACAGGCA 241 CTTCCGCTCGGGGTTGCATGCTCTGTGTCATCTTACCGGTCCAGGGTAGGAAAT 241 CTTCCGCTCGGGGTTGCATGCTCTGTGTCATCTTACCGGTCCAGGGTTGCAGGTAGGAAAT 241 CTTCCGCTCGGGGTTGCATGCTTGTGTCTTACCGGTCCAGGGTTGCAGGTAGGAAAT 241 CTTCCGCTCGGGGTTGCATGCTCTGTGTCTTACCGGTCCAGGGTTGCAGGTAGGAAAT	Qy 301 GTTTGTACCTCTTTGTACGACCTTTGGGCCCCTTAGGGGCGTGGGGGGTTGGGGGGTTGGGGGGTTGGGGGGTTGGGGGG	 421 GAGAGCTCCTGAAACCCCCACTTAGCTTCCGAGACCTTTCTGCAAAAGCTCCTCCTGGCTT 48 	481 TCCTCCCTCCCCCAATCTATGGGTCCAGGTAACAGATCTGAGGGGAACTGCTGGTGGTGGTGGTAG 	rttagggccttctagaggcagtg 	stgcagggcagctgatggga 66	Oy 661 TAAGGTGGGGAAGGACGGTCAGTGGGCCCCAGCTGGCGCAGCATGGGGAAAA 720 Dy 661 TAAGGTGGGGAAGGACGGTCAGTGGGCCCCAGCTGGCCGAGCATGGGGAAAA 720 Db 661 TAAGGTGGGGAAGGACGGTCAGTCAGTGGTGGGCCCCAGCCTGGCGATGGGGAAAA 720	QV 721 CCAAACCATGTCCCCCAGGGAAGGGCCAGAGTGGGAACCTGTCCTCATGCCCTTGGTCCT 780
QY 2041 GTGTTCTGGGCATTTGGTCAGCTTCTCACTCGATCCTCCCTAAAGCAATGGGGAGGCCCC 2100 Db 2041 GTGTTCTGGGCATTTGGTCAGCTTCTCACTCGATCCTCCCTAAAGCAATGGGGAGGCCCC 2100 Db 2041 GTGTTCTGGGCATTTGGTCAGCTTCTCACTCGATCCTCCCTAAAGCAATGGGGAGGCCCC 2100 QY 2101 CATTAGCCCGGTTTGGGAAGTCAACTGGGGGGGGGGGGG	2221 CTCATGCTCTCAGATAGGTGGGGAAGTTCTTTTGTCACAGTGCTGGGCTCTGAGG 228 2221 CTCATGCTCTCAGATAGGTGGGGGGAAGTTCTTTTGTCACAGTGCTGGGCTCTGAGG 228 2221 CTCATGCTCTCAGATAGGTGGGGGGGGTCAGGTCTTTTTGTCACAGTGGCTGGGCTCGGGG 228 2281 CCTCATGCTGGCTGGGGTGGTGCTCTGCTGGGGAAAAAGCTTTGCGGGGGGCTTGCTT	2341 CacadaAdaGaGaArGFTFTGGGGFGCFCFCFGCAGCTCCCCGFGCTGGGFGGAA 2341 CacadaAgGGGAArGFTFTGGGGFGCFCFCFGCAGCTCCCCGFGCTGGGFGGAA 2341 CacadaAgGGGAArGFTFTGGGGGFGCFCFCFGCAGCTFCCFGCGGFGFGGAGGGAAGGGGGAAGGGGGACTGFTFTGGGGFGCFCFCFGCFGCFGCFGCFGCFGCFGGFGGFGGFG	QY 2461 ACCFOCAACACTTACGGAGAGACTATTATAGGAGGAGAGAGAGGAGAGACTCTCC 2520 Db 2461 ACCTCCAACACTTACCAGAATTGGGAGACTATTATAGGAGGAGATACTGGTC 2520 Db 2461 ACCTCCAACACTTACTCAGAATTGGGAGACTATTATAGGTGGAGGAGATACTGGTC 2520 QY 2521 GGGGTGGTGGGGCCTTGGATGGGTGGGGGTGGGGGGGGGG	QY 2581 TGAGCTCAAAGTTGTCCTACTGCCATGTTTTGTACCTGAAATAAAGCATATTTTGCACT 2640 Db 1	2701 TGCAAATAAAA 2701 TGCAAATAAAA 2	ABT07523 ID ABT07523 standard; cDNA; 2754 BP. XX AC ABT07523;	DT 14-NOV-2002 (first entry) XX DE Human breast cancer associated coding sequence SEQ ID NO: 2. XX	KW Human; breast specific gene; breast specific protein; breast cancer; XX gene therapy; cytostatic; gene; ss. XX Domo saviens	200	-FEB-2002; 2002WO-US00419	PR 13-FEB-2001; 2001US-0268292P. XX PA (DIAD-) DIADEXUS INC.

us-09-989-920-100.rng

Page 4

125.0

Qy 1861 TGGAAGGAGTCCCACGGGAGATGGGTCCGAGGTCCGGCTGTGGCGCCCTGTG 19 Db 1861 TGGAAGGAGTCCCACGGGAGATGGGTCCGAGGTCCGGCTCCAGCCCCCTGTG 19 Db 1861 TGGAAGGAGTCCCACGGGAGATGGGTCCGAGGTCCGGCTGCGCCCCTGTG 19 Db 1961 TGGAAGGAGTCCCACGGGAGATGGGTCCGAGGTCCGGCTGTGGCGCCCCTGTG 19 Qy 1921 GCTTGTCCACGGGGAGATGGCTCCGGGGTGGTCTTCACTCCCGGGGGCGAGCCACCTG 19 Db 1921 GCTTGTCCAGGCCCTGTGGCGCTCGTGGTGGTCTTCACTCCCGGGGGCCAGCCA	TGTTCTGGGGCATTTGGTCAGCTTCTCACTCGATCCTCCCTAAAGCAATGGGGAGGCCCC 	Db 2161 TACTGATGGCCGGGCCGGGTCGGGCTCCTGGGTGCCGGTCCCGCTTGCAGAT 22 Qy 2221 CTCATGCTCTCGGATAGGTGGGCACAGATCTTTTGTCAGGTGCTGGGCTCGGCTGGGGT 22 Qy 2221 CTCATGCTCCGGATAGGTGGGCACAGATCTTTTGTCACGGGCTCGGGCTCGGGG 22 Db 2221 CTCATGCTCCGGATAGGTGGGCACAGATCTTTTGTCACGGGCTCGGGCTCGGGC 22 Qy 2281 CTCATGCTGGCGGGGAAGGGCACAGATCTTTTGTCACGGGGGGCTTGGCTGGGGG 22 Db 2281 CCTCATTGCTGGCGGGGGGGGGGGGGGGGGGGGGGGGGCTGGCT	0y 2341 CACAGAAGAGAGAGAGCTGTTTGGGGTGCTCTTGCAGCTGCTGGGTGGAA 24 0y 2341 CACAGAAGAGAGAGAGTGTTTGGGGTGCTCTTGCAGCTCCCCGTGCTGGGTGGAA 24 0y 2401 GCAGGGTTACTGTGTTTTGGGGTGCTCTTGTGGGTGGGAAGGGGGGGG	2461 ACCTCCACACCTTTCCCAGATTGGGTGGACTCTTTTCTAAGGTGGGAGTATCTGTC [Qy 2581 TGAGCTCAAGGTTGTCCTACTGCCATGTTTTTGTACTGAATTAAAGGATATTTTGCACT 26 Db 2581 TGAGCTCAAGGTTGTCCTACTGCCAGGTTTTTGTACCTGAAATTAAAGGATATTTTGCACT 26 Db 2581 TGAGCTCAAGGTGCCACGCGCGAGGAGGTCTGGAAATTAAAGGATATTTTGGACT 26 Qy 2641 TGTTACTGAAGGTGGGGAGGGAGGGAGGCGTGGAAGGATTTTTGGACT 26 Db 2641 TGTTACTGTACGGGAGGGAGGCAGGGAAGGTCTGTGGGGTTAGGAA 27 Db 2641 TGTTACTGTACGCGGGGGGGAGGCAGGGAAGTCTGTGGGGGTTAGGAA 27 0y 2641 TGTTACTGTACGCGGGGGGGGAGGCAGGGAAGTCTGTGGGGTTAGGAA 27 0y 2701 TGCTAAATAAAGTCCCAATAGTGGGGAGGAAGGTCTGTGGGGGCC 2754	2701 TGCAAATAAACTCACATTTGTAAGAAAAAAAAAAAAAAA
CCAAACCATGTCCCCAGCGAAGGGCCAGAGTGGGGAACCTGTCCTCATGCCTTCGTCCT 78 GAGGAGCCCTGAGGTGGGGCGCGGGGGGCGGGGGGAGTTTTCAGGCCTTCATCAAGAGA 84 [1]	BCTGTTATC CTCCCCCATC CTCCCCCATC CTCCCCCATC CTCCCCCATC CTCCCCCATC STACTCCATT STACTCAATT	1081 GATTTPATCARTTAAAAATTGTGAAATTTGTTGCTCTTAGGCCAACATAATATTGAT 1140 1141 TTTGCCTCTTGGCTCTGAAAGGCCCAAAATATTTACCGTCTAGGCCGCAACAAAAAGTC 1200 1141 TTTGCCTCTTGGCTCTGAAAGGCCCAAAATATTTACCGTCTAGGCCGGTACAGAAAAGTC 1200 1201 TGCCTGCTGGGCTCTGGAGGCCCAAAATATTTACCGTCTAGGCCGGTTACAGAAAAGTC 1200 1201 TGCTGACTACTGGGCCCGGGCCCAAAATATTTACCGTCTGGCCGGTTACAGAAAAAGTC 1200	CTCAGACAGTAAGGGCTTTTTTTAAAAGAATAAAATGGCTGGTTGGGTAGGGCTGGGAGGGG 132 CTCAGACAGTAAGGGCTTTTTTTAAAAGAATAAAATGACTTGGGTTGGGTTGGAAGCAGG 132 CTCAGACAGTAAGGGGGGTTTTTTTAAAAGAATAAAATGACTTGGGTTGGGTTGGAAGCAGG 132 GGAAGCATTCAGATGAGGGGGGTTTTTTAAAAGAATAAAATGACTTGGGTTGGGTTGGAAGCAGG 138 GGAAGCATTCAGATGAGGGGGGTTTTTTAAAAGAATAAAATGACTTGGGTTGGGTTGGAAGCAGG 138 GGAAGCATTCAGATGAGGGGGGTTTTTTTAAAAGAATAAAATGACTTGGGTTGGGTTGGGAGGGGG 138	TGTGGCTGGGGGGGGGGGGCCCCCTTGGATTCTGGTGCTGGCTG	TCCTGGGGACCGCTGGGCCTTGGTCTGCATCCCCTGGGGTCGTGG 1 TCCTGGGGACCCGCTGGGCCTGGCCTGGCCTGGGGTCGTGGG 1 TCCTGGGGAGCCCGCTGGGCCTGGGCCTGGGCCGGGGCCGGGTTGATG 1 TCCTGGGGAGCCGCTGGGCCTGGGCCGGGGCGGGGCCGGGCTCGGGCTTGATG 1 TCCTGGGGAACCGCTGGGCCGGGGCGGGGCGGGCCGGCCCGCCC	1621 TGTCCTGGGGGGGGGGCGCTGATCTCACCTCCCCCTGGTAGAGGCCTT 1680 1621 TGTCCTGGGGGGGGGCGCTGATCTCACCTCCCCCTGGTAGAGGCCTT 1680 1621 TGTCCTGGGGGGCGCGCTGATCTCCCCCCTGGTAGCATCTGGGGACCTT 1680 1631 TGGCTTCTCGGGAGCCTGATCTCCCCCTGGTGGCGCTGCTGAGA 1740 1631 TGGCTTCTCGGAGGCCTCGCCCCCGGGGGCGCTGCTGCGGAGCTGACAA 1740 1631 TGGGTTCTCGGAGGCCTCGGAGGCTCTCCCCGGGGGGCGCTGCTGCAAA 1740 1741 AGGGGACTGCTGGAGGCCTCAGGTGGCTGCGGGGGCGCCCCCGGGCGCTCCCCGGGCGCTCCCCGGGCGCCCCCC

1 From Generation Construction Constructi		-	-'). <u>A</u> 118	, c hkiris	T.						i a				
 164. FRAMAGANGTCCACAGGAMAN FRANCESCACTAGAGCCACTAGAGCCACTAGAGCCACTAGAGCAGCACCACTAGAGAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGC	92	86 86	040		16	16	22	28.28	46 6	r Ö	40	46	52	585	64 64	70						
1986 1986 1986 1986 1986 1986 1986 1986	1 TGGAAGGACTCCCACGGGAGATGGCT 1 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	I GCTTGFCCAGCCTCTGF3CACCCCGGGGGCGGGCGGCGGCGGCGGCGGCGGCGGCGGC	CAGETICCTTTCTFCGFGAGFAACAGTAGFGATAGCAGCTGGGGGCTAACAGGCTAACAGGCTAT [I GTGTTCTGCGCATTTGGCCAGCTTCTCACTCGATTGCGCGCAGGGGGGGG		CHTHEILINI IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	1 TACTGATGGCCCGGGGCTGGGTTGGGGCTGCTGGGGTGTCCGGGGTCCCGCTTGCAGAT 	1 CTCATGGTTGGGTGGGGACAAGTTCTTTTGTCAGGGTGGCTGGC		I CCLCAITECTESCIESCIESCIESCIESCIESCIESCIESCIESCIESCI	CACAGAAGAGAAGGGGACTGTTTTGGGGTGCCTCTCTGCTGCTGCGGTGGGTG	<pre>1 GCaCGGTTACTGTGTTCTCATGTTCTTGAAAGATTCTTTCTAAGATGTA </pre>	1 accrcacaccurrencegarreggerggergggergggggranden 1	I GGGTGGTGGTCGTTGGATGGGTCGGGTGGGGTGGGGGGGG	TGAGCTCAAGCTTGTCCTACTGCCATGTTTTTGTACCTGAAATAAAGCATATTTTGCACT 	TGTTACTGTACCATAGTGCGGGCGGGGGGGGGGAGTCTGTGGGGATCTGGGTTGGA 	TGCAAATRAAACTCGCATTTGTAAGAAAAAAAAAAAAAAA	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	standard; cDNA; 2399 B		003 (first entry) 	cific nucleic acid (LSNA) #
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	a a	6 6	196	506	210	210		N N	N 0	N M	3	4 4	4 4	ഗവ	5 5	രശ	270	270	r 3 049/c ABX920	6	08-MAY-	ds Sunn
	ov du	Q 40	ò á	2 2 2	5	qа	AQ AQ	VQ d	δų į	8	qa	රි සි	ζς d	& 9	δ d	VQ dq	QY	qa	RESUI ABX92 ID	Y A Y	E X E	2X

5-

ې

us-09-989-920-100.rng

ഗ Page

ronaen meil - reinnen sonnen sonnen sonnen	ן אַר אַר 1 1979 -	cmrrmaa raa norronnea namea gagaga adaga ada marka adaga 1920
XW CALCEL MULLICITURY CALLET SCAPING, CALLET MAGAINY LUNG CALLET, XW non-cancerous diseases of the lung; transgenic animal; gene; 88.	n u	8
AA OS Homo sapiens.	0101	- 00
XX PN W0200268633-A2.		и 1 о
XX PD 06-SEP-2002.	ه م	
XX PF 21-NOV-2001; 2001W0-US043612.	7 10 7 10	1 -
XX PR 22-NOV-2000; 2000US-0252500P.		ALTATION MAGAGAMATATATATCH LUGACCOMATGMAGICALLACCCCCALLACACCATATA ALTATION (
XX PA (DIAD-) DIADEXUS INC.	7 1 U I	
XX PI Macina RA, Recipon H, Chen S, Sun Y, Liu C;		
WPI; 2002-713376/77.	201 201	113
XX PT New isolated human nucleic acid molecule and polypeptide, useful for PT identifying, diagnosing, monitoring, staging, imaging and treating lung PT cancer and non-cancerne diseases of the lung	0 0	162
Claim 1; Page 238-240; 389pp; Englis	QY 1136 7	TIGATTITGCCTCTTGGCTCTGAAAGCCCCAAAATATTITACCGTCTGGCCGTTACAGAAA 1195 11/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1
	96TT 6T0T	1 11
	1559	
	QY 1256 2	AAAGCCTCAGACAGTAAGGGCTTTTTTAAAAGAATAAAAGACTTGGTTTGGCTTGGAA 1315
	Db 1499 7	A A A A A A A A A A A A A A A A A A A
INVERTION, GENE THEREPY, PRODUCTION OF FIGURGENET ANNUALS OF of engineered lung tissue for treatment and research. This se encodes a lung specific nucleic acid	1316	GCAGGGGAAGCATTCAGATGAGCGGTTTCTGCATTAACCCTGCCTATCAGCATCTCGTG 1375
	1439	3CAGGGGGAAGCATTCCAGATGAGGGGTTTCTGCATTAACCCTGCCTATCAGGGATGTCTGGG 1380 2002-2002-2002-2002-2002-2002-2002-20
uery Match 87.1%;	QY 1376 7 Db 1379 7	TCCTGTGTGGCTGGCGGCGCCCCCTTGGGAGGTTCTGGCTTCGGCTGGCT
rteu. NO. 0; 0; Mismatches 1; Indels 0; Gaps	1436	
	Db 1319	Greekeeresteresteresteresteresteresteretteretteretteresteresteresterender 1260
	Qy 1496	CCTGTTCCTGGGGACCGCTGGGCCTTTGGTCTGCATCCCCTGGCCAGGTCCCTCAGGCT 1555
2339 ACCTGAGAGCTCCTGAAAACCCCCACTTAGCTTCCGGACCTTTTCTGCAAAAGCTCCTCCT	q	COTGTTCCTGGGGACCCCCTTGGGCCTTGCATCCCCTGGCCAGGTCCCTCAGGGT 1200
476 GGCTTTCCTCCCTCCCCCAATCTATGGGTCACAGCTAACAGATCTGGGGGGAACTGCTGT 	000 000 000 000 000 000 000 000 000 00	Tearteediseasaasaasaatti taateediseeteediseeteediseasaatti tii 111111111111111111111111111111
Db 2279 GGCTTTCCTCCCTCCTCCTATCTATGGGTCACGGGCTAGGAGGGAG	. QY 1616	acteringrecendedagededecendenterenetereneterenenege 1675
2219 GCTAGGGCAGGGCTGCCAGCCAGCCATCCCCGGGTCTGCCACTTTAGGGCCTTCTAGAGG 2	Db 1139	ACTCTTGTCCTGGGGGGGGGGGGCCTGATCTCACCTCCACCTTGGGGACTGAGG 1080
596 CAGTGTCCTTAGGAAGTAGCTCTGAGGCATGGGCTTTTTCTGCTCTGTGCAGGGCAGCTGA	QY 16/6 Db 1079	ACTITICATION AND AND AND AND AND AND AND AND AND AN
Db 2159 CAGTGTCCTTAGGAAGTAGCTCTGAGGCATGGGTTTTCTGCTCCTGTGCAGGCAG	QY 1736	TACAAAGGGGACTGCTCACAGTGGCCTCAGCTTGGTGGTGGTTTTGAGGGGGCCGCCCCCGGGC 1795
Db 2099 TGGGATAAGGTGGGGGAGGGGGGGGGGGGCGGGCCGGCCG		
	Db 959	CTCCCATAAGGGTAFCCTGGGGCCTGAGGAATTCTGCATTGGGAGGGAGGGAGGG
TTCATCAA	QY 1856	TCAAATGGAAGGAGTCCCACGGGAGATGGGTCCGAGGTCCGGCTGTGGCCATCCAGCCCC 1915 1111111111111111111111111111111111
	200	CARARI 1966ARG6469AG701010900110900110900100000000000000000

ৰ
ò
×
20
C4
m
ы́.
••
н
ŝ
••
08
-
N
Dec
Thu

us-09-989-920-100.rng

Sequence 960 BP; 183 A; 351 C; 232 G; 193 T; 0 U; 1 Other; WO200268633-A2 06-SEP-2002 8 q 8 q 8 g S g δ q S q δ qq 1975 2035 2095 2155 2215 2275 2335 2395 2515 2575 2455 2635 2695 720 660 600 540 180 780 480 420 360 300 240 179 GGCGTTGAGCTCCAAAGTTGTCCTACTGCCATGTTTTTGTACCTGAAATAAGCATATTTT 120 60 ч CACTGCAGTTCCTTTCTTCGTGAGTAACAGTAGTGATAGCAGCTGGGGGCTAACAGGCTAAG TGGAAGCACGGTTACTGTGTTCTCTAATGTTCATGTTTTAAAATGGTTTCTTTTCTTAAGG CTGTGGCTTGTCCAGCCTCTGTGCACCCCTGGTGTCTTCACTCCAGGGGCAGACAGCAGC 839 CTGTGGCTTGTCCAGCCTCTGTGCACCCCTGGTGTCTTCACTCCAGGGGCAGGACAGCAGC GCTTTGTGTTTTGCGCATTTGGTCAGCTTCTCACTCGATCCTCCCTAAAGCAATGGGGAG GCCCCCACTAGCCCAGTTTTCAGGAAGTCAACTGGGAGGTTAGATGGGGGGCCAGGGTCCC 659 GCCCCCACTAGCCCAGTTTTCAGGAAGTCAACTGGGAGGTTAGATGGGGGGGCCCAGGGTCCC ACAGCTACTGATGGCCCGAGCCAGGTTGAGCTTCCTGGTGTCCAGTCCGGATCCCACTTG 599 ACAGCTACTGATGGCCCGAGCCAGGCTGAGCTTCCTGGTGTCCAGTCCGGATCCCACTTG 2216 CAGATCTCATGCTCTCAGATAGGTGGGACAAGTTCTTTTGTCACAGTGCTGGGCTCTGTCC CAGATCTCATGCTCTCAGATAGGTGGGGGCCAAGTTCTTTTGTCACAGTGCTGGCTCTGTCC 2456 ATGTAACCTCCACACTTTCTCCAGATTGGGTGACTCTTTTCTAAGGTGGTGGGGGGGTAT GCACTTGTTACTGTACCATAGTGCGGACGAGAAGTCTGTATGTGGGATCTGTGCTTGGGT GCACTTGTTACTGTACCATAGTGCGGACGGACGAGAGAGTCTGTGTGGGATCTGGGGTCGGGACGAGGAGAGTCTGGGGT CACTGCAGTTCCTTTCGTGAGTAACAGTAGTGAGTAGTGGCGGCTAGCAGGCTAG 2576 GGCGTTGAGCTCAAAGTTGTCCTACTGCCATGTTTTTGTACCTGAAATAAAGCATATTTT Lung specific nucleic acid (LSNA) #99 ВР CDNA; 960 (first entry) ABX92057 standard; 08-MAY-2003 2036 539 (2336 359 ' 2516 (1916 779 2096 2156 . 1976 719 2636 119 66 ABX92057 ABX92057 ID ABX RESULT qa ð qq 90 କୁସ å ò g δ ð qq δ δ qq q 5 â δ 8 \mathcal{S} - ð δ Db X _____ 1 ť -

identifying, diagnosing, monitoring, staging, imaging and treating lung cancer and non-cancerous diseases of the lung. ö Liu 7 Sun Claim 1; Page 246; 389pp; English. s, Chen 21-NOV-2001; 2001WO-US043612. 22-NOV-2000; 2000US-0252500P Recipon H, (DIAD-) DIADEXUS INC WPI; 2002-713376/77. RA, Macina

of 120 10-1333 residue amin occid sequences (31), given in the specification, comprising any of 164 179-12421 base pair sequences (32), given in the specification. The methods and compositions of the present invention are useful for identifying, diagnosing, monitoring, staging, They are also used for identifying lung tissue, monitoring and identifying and/or designing antagonists of the polypeptide of the invention, gene therapy, production of transgenic animals and production of engineered lung tissue for treatment and research. This sequence encodes a lung specific nucleic acid The invention describes an isolated human nucleic acid (I) encoding any

ik.

1837 с, 1777 1897 1957 2017 2137 1717 2077 280 520 160 220 340 400 460 41 GTACCTTGGGGACTGAGGACCTTTTGGCTTCTCGGAGCCTGCAAGCCTCTTCCCATGTG 100 GTACCTTGGGGACTGGGGACCTTTTGGCTTCTCTGGGGGCCTGCAGCCTCTTCCCÄTGTG TCCAGCTGCTCCTCCTGCTACAAAGGGGACTGCTCCACAGTGGCCCCCAGCTTGGTGGTTTT 221 ATTGGAGGATGGACCACCCAAATGGAAGGAGTCCCACGGGAGATGGGTCCGGGGTCCGGG Crereaccarccadececcrerescreterccadecrrerecadecarcreter GAGGGGCCCCCCCGGCCCTCCATAAGGGTATCCTGGGCCTGAGAATTCTGCATCTGCC 1838 ATTGGAGGATGGACAGCCTCAAATGGAAGGAGTCCCACGGGAGATGGGTCCGAGGTCCGG CCAGGGGGCAGCAGCCACTGCAGTTCCTTTCTTCGTGAGTAACAGTAGTGGTAGCAG CCAGGGGCAGGCAGCCACTGCAGTTCCTTCTTCGTGAGTAACAGTAGTGATAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGTAGCAGTAGCAG CTGGGGCTAACGGCTAGGCTTTGTGTGCGCATTTGGTCAGCTTCTCACTCGATCCT 461 CCCTAAAGCAATGGGGGGGGGCCCCCCACTAGCCCAGTTTTCAGGAAGTCAACTGGGAGGTTA TCCAGCTGCTCCTTCCTGCTACAAAGGGGGACTGCTCACAGTGGCCTCAGCTTGGTGGTGGTTTT GAGGGGCGCCCCCGGGCCTCCATAAGGGTATCCTGGGCCTGAGAATTCTGCATCTGCC creegecraacagecrassecrrrererrerececarrregreagerreacreacreatecr CCCTAAAGCAATGGGGAGGCCCCCACTAGCCCAGTTTTCAGGAAGTCAACTGGGGAGGTTA Gaps з; Query Match22.2%;Score 612.4;DB 6;Length 960;Best Local Similarity99.4%;Pred. No. 1e-156;Matches646;Conservative0;Mismatches1;Indels3 1718 101 1778 161 1898 1958 1658 2018 2078 341 401 8 å

2196

GATGGGGGCCGGGGTCCCCA-GCTACTGATGSCCCGGGCCGGGTTGGGCTTCCTGGTGT

2138

20

Human; gene therapy; vaccine; lung specific antigen; cancer diagnosis; cancer monitoring; cancer staging; cancer imaging; lung cancer; non-cancerous diseases of the lung; transgenic animal; gene; ss.

Homo sapiens

Q Page

Thu Dec 2 08:51:53 2004

÷

e.

qq	521 GATGGGGGCCAGGGTCCCACATGCTGCTGGTGGCCCGAGGTTGAGCTTCCTGGTGT 580	
ò	2197 CCAGTTCCGGAT-CCCACTTGCAGATCTCATGCTCTCAAGATGGTGGGGGACAAGTTCTTTTG 2255	
qq	581 CCAGTCCGGATCCCCACTTGCAGATCTCATGCTCTCAGATAGGTGGGACAAGTTCTTTTG 640	
yo qu	2256 TCACAGTGCTGG-CTCTGTCCTGAGGCCTCATTGCTGGCTGGGTGTGCTC 2304	
2		
RESU ABV5 ID	LT 5 4530 ABV54530 standard; cDNA; 611 BP.	
XXX	ABV54530;	
2日3	17-SEP-2002 (first entry)	
S E S	Human prostate expression marker cDNA 54521.	
XXX	Human; prostate cancer; cytostatic; carcinogen; pharmacodyanamic marker; pharmacogenomic marker; gene; ss.	
XS	Homo sapiens.	
Y N I	W0200160860-A2.	
283	23-AUG-2001.	
PF V	20-FEB-2001; 2001WO-US005171.	
22 77 77 77 77	17-FEB-2000; 2000US-0183319P. 16-MAR-2000; 2000US-0188862P. 25-MAY-2000; 2000US-0207454P.	
면 지	-JUL-2000; -JUL-2000; -DEC-2000;	
YAX	(MILL-) MILLENNIUM PREDICTIVE MEDICINE INC.	
Z I Z	Schlegel R, · Endege WO, Monahan JB;	
S S S S	WPI; 2001-662795/76.	
PT Pr PT Pr PT Pr For	Novel isolated nucleic acid molecule associated with cancerous state of prostate cells and correlating with presence of prostate cancer, useful for detecting presence of prostate cancer, stage of prostate cancer.	
S A X	Claim 1; Page 10539-10540; 11750pp; English.	
888	The invention relates to an isolated nucleic acid molecule (I) comprising a nucleotide sequence given in Tables 1-9 (ABV00010-ABV62213) of the specification or its complement. (I) is useful for: (a) assessing whether	
888	a pattent is arritored with prostate cancer; (b) monitoring the progression of prostate cancer in a pattent; (c) assessing the efficacy of a test compound to inhibit prostate cancer in a patient; (d) assessing	
ខ្លួនទ	the efficacy of a therapy for inhibiting prostate cancer in a patient; (e) selecting a composition for inhibiting prostate cancer in a patient; (f) assessing the prostate cell carcingenic potential of a compound; (g)	
ខ្លួនខ្ល	determining whether prostate cancer has metastasized in a patient; (h) assessing the aggressiveness or indolence of prostate cancer in a patient ; (I) is also useful as a pharmacodyanamic or pharmacogenomic marker	
SQ	Sequence 611 BP; 111 A; 174 C; 164 G; 159 T; 0 U; 3 Other;	
A B C	Query Match 20.1%; Score 554; DB 5; Length 611; Best Local Similarity 99.5%; Pred. No. 7.8e-141; Matches 565; Conservative 0; Mismatches 2; Indels 1; Gaps 1;	
ço da	1194 AAAGFCTGGTGGCTACTGGGCCGGGCCTCCTTACCTCCCTGTGGATTATTTAA 1253 	

2 08:51:53 2004 Thu Dec

us-09-989-920-100.rng

œ Page

WO200172781 - 42	man; ss; lung cancer; adenoc ostate cancer; benign prosta	Human cancer related cDNA sequence #176.	16-JAN-2002 (first entry)	AAS59058;	SULT 7 59058 AASS9058 standard; CDNA; 395 BP.	2268 CTCTGTCGTGAGGCCTCATTGCTGGCTGG 2296 	492 CCCACTTGCAGATCTCATGCTCAGATAGGTGGGGGGCAAAGTTCTTTTGTCACAGTGCTGG 551	2208 CCCACTTGCAGATCTCATGCTCCAGATAGGTGGGGACAAGTTCTTTGTCACAGTGCTGG	2150 GGTCCCACAGGTACTGATGGCCCGGAGCCAGGTTGAGCTT CCTGGTGTCCAGTCCGGGT 2207 	2031 GCTAGGCTTTGGTTCTGCGCATTTGGTCGCCTTCTCCTCGTCGTAAGCAATG 2090 	1972 CAGCCACTGCAGTTCCTTTCCTGAG-TAACAGTAATGAGGCTGGGGCTAACAG 203 	1912 CCCCTGTGGCTTGTCCAGCCTCTGTGCACCCCTGGTGTCTTCACTCCAGGGGCGGGC	1854 CCTCAAATGGAAG-GAGTCCCAGGGAGAATGGGAGGAGGACCCAGGGTCCAGG 191 1854 [1795 CCCTCCATAAGGGTATCCTGGGCCTGAGATTCTGCATCGCCATTGGA-GGATGGACAG 1853 		The present invention provides buman breast spectations: These can be used in the diagnosis. proteins. These can be used in the diagnosis is a coding sequence of the invention Sequence 591 BP; 106 A; 166 C; 172 G; 147 T; 0 Sequence 591 BP; 106 A; 166 C; 172 G; 147 T; 0 Sequence 591 BP; 106 A; 166 C; 172 G; 147 T; 0 Sequence 591 BP; 106 A; 166 C; 172 G; 147 T; 0 Sequence 591 BP; 106 A; 166 C; 172 G; 147 T; 0 Sequence 591 BP; 106 A; 166 C; 172 G; 147 T; 0 Sequence 591 BP; 106 A; 166 C; 172 G; 147 T; 0 Sequence 591 BP; 106 A; 166 C; 172 G; 147 T; 0 Securestrative 97:54; Pred. No. 1:3e-1; 201 [][[][][][][][][][][][][][][][][][]][][]	lat ULL Control of the second s
		<pre>man; ss; lung cancer; adenocarcinoma; breast cancer; colon canc ostate cancer; benign prostatic hypertrophy; BHP; cytostatic.</pre>	<pre>man cancer related cDNA sequence #176. man; ss; lung cancer; adenocarcinoma; breast cancer; colon canc ostate cancer; benign prostatic hypertrophy; BHP; cytostatic.</pre>	-JAN-2002 (first entry) man cancer related cDNA sequence #176. man; ss; lung cancer; adenocarcinoma; breast cancer; colon canc ostate cancer; benign prostatic hypertrophy; BHP; cytostatic.	S59058; :JAN-2002 (first entry) man cancer related cDNA sequence #176. man: ss; lung cancer; adenocarcinoma; breast cancer; colon canc ostate cancer; benign prostatic hypertrophy; BHP; cytostatic.	7 6 S59058 standard; cDNA; 395 BP. S59058; -JAN-2002 (first entry) man cancer related cDNA sequence #176. man sacilung cancer; adenocarcinoma; breast cancer; colon canc ostate cancer; benign prostatic hypertrophy; BHP; cytostatic.	<pre>2268 CTCTGTCCTGAGGCCTCATTGCTGGGCTGG 2296 111111111111111111111 552 CTCTGTCCTGAGGCCTCATTGCTGGGCGGG 580 6 6 6 6 559058 standard; cDNA; 395 BP. 559058 standard; cDNA; 395 BP. 559058; -JAN-2002 (first entry) man cancer related cDNA sequence #176. man cancer related cDNA sequence #176. man s s: lung cancer; adenocarcinoma; breast cancer; colon cancostate cancer; benign prostatic hypertrophy; BHP; cytostatic.</pre>	<pre>7 2268 CTCTCTCTCATGCTCCATGCTCCAGATAGGTGGGGACAAGTTCTTTTGFCCACAGTGGCGG 2268 CTCTCTCTCTCGAGGCCTCATGCTGGCTGGGCTGGGGGGGG</pre>	<pre>2208 CCCACTTGCAGATCTCAGGTCGGAGAAGTTCTTTGTCAGGGGGGGAGAGTTCTTTGTCAGGGTGGG 492 CCCACTTGCAGATCTCATGGTCTCAGATAGGTGGGGAGAGTTCTTTTGTCACAGTGGTGG 2268 CTCTGTCGTGGGCCTCATGGTGGGGGGGGAGAGTTCTTTGFCACAGTGGTGG 2268 CTCTGTCCTGAGGCCTCATTGCTGGGGGGG 2296 11111111111111111111111111111111111</pre>	<pre>2091 GGGAGGCCCCACTAGCCAGTTTTCAGGAGGTTAGTTGGAGGGGTTAGTTGGGGGGGG</pre>	<pre>2031 GCTAGGCTTTGTGTTGGTCGGCTTTGGTCGGCTTGGTCGGTTGTT</pre>	<pre>1972 CAGCGACTCGATTCCTTTCTTCGTGAG -TAACAGTAGTGATAGCGGGGGGGGGGGGGGGGGGGGGGG</pre>	<pre>1912 CCCCCTGGGGCTTGTCCAGCCCTCGGGGCGGGGGGGGGG</pre>	<pre>1854 CCTCAAATGGAAG -GAGTCCCAGGGAGATGGGTCCGAGGTCC -GGCTGGGCCATCGAG 132 CCTCAAATGGAAG -GAGTCCCAGGGAGATGGTGGGTGGGCTGGGGCTGGGCCATCGAG 132 CCCCCTAATGGGATGGTCCAGGGAGATGGTCCGGGGGTGGGGGGGG</pre>		Ω.	S
<pre>2150 GGTCCCACAGCTACTGATGGCCCGAGCCAGGCTAGCTTCCTGGTGTCCGGAT 432 GGTCCCACAGCTACTGATGGCCCGAGCCAGGCTAGGCTTTCCTGGATGTCCAGTCCGGAT 432 GGTCCCAGGTCTCAGGTCGGATAGGTGGGCTTCCTGGATGTCCTTGTCCAGTGCGGGT 432 CCCACTTGGCGATCTCATGCTCGGATAGGTGGGACAGTTCTTTGTCCAGTGCGGGG 432 CCCACTTGGGGATCTCATGCTCGGATAGGTGGGACAGTTCTTTGTCACAGTGCGGGG 2268 CTCTGGCGGAGTCTCAGGTGGGACAGGTTCTTTGTCACAGTGCTGG 2268 CTCTGTCGGGGGATCTCAGGTGGGACAGGTTCTTTGTCACAGTGCTGG 2268 CTCTGCTCGGGGGTCGG 2296 1 </pre>	2150 GGTCCCACAGCTACTGATGGCCCGAGGCTGAGGCTT - CCTGGTGTCGGGTT 432 GGTCCCACAGCTACTGATGGCCCGAGGCTGGGGTTGGCTTTCCTGGATCCGGGTT 432 GGTCCCACAGCTCTATGGCCCGAGGCCGAGGCTTTCCTGGATCGGGTCGGGTT 2208 CCCACTTGGAGGTCTCATGGTCGGTGGGGGACAAGTTCTTTTGTCACAGTGCGGG 492 CCCACTTGGAGGCCTCATGGCTGGGTGGGGGGACAAGTTCTTTTGTCACAGTGCGGG 2268 CTCCTCGGGGGCTCATTGGCTGGGTGG 2296 111111111111111111111111111111111111	2150 GGTCCCACAGCTACTGATGGCCCGAGCCGGGTTGAGCTT - CCTGGTGTCGGGTTCGGGTTGAGGCTTCCGGTTCGGTTCGGGTTCGGGTTCGGTTCGGGTTC	2150 GGTCCCACAGCTACTGATGGCCCGAGCCGGGTTGAGCTT - CCTGGTGTCCGGTCGGGTT 432 [2150 GGTCCCACAGCTACTGATGGCCCGAGCCAGGCTTGAGCTT - CCTGGTGTCGGGTCGGGT 432 [2150 GGTCCCACAGGTACTGATGGCCCGAGCCAGGTTGAGCTT CCTGGTGCGGTTCGGGTT 432 GGTCCCACAGGTACTGATGGCCCGAGCCAGGTTGAGCTTTC-CGGTCCGGAT 432 GGTCCCACAGGTACTGATGGCCCGAGCTAGGCTTTCCTGGATGTCCGGTTCCGGAT 2208 CCCACTTGCAGTTCATGCTCACGTAGGCGGGGACAAGGTTTCTTGGGATGTCCGGAT 2208 CCCACTTGCAGTTGCTCACGATGGCGGGGACAAGGTTCTTTGTCACGGTGCGGAT 2208 CCCACTTGCAGATCCATGCTCTCAGATGGTGGGGGACAAGGTTCTTTGTCACAGTGCGGATGG 492 CCCACTTGCAGGTTGCTGGTGGGGAGCAAGGTTCTTTTGTCACAGTGCTGG 2268 CTCTGTCCTGAGGCCTCATGCTGGCTGG 2296 111111111111111111111111111111111111	2150 GGTCCCACAGCTACTGATGGCCCGAGCCTGAGCTTCCTGGTGTCCAGTCGGGT 1111111111111111111111111111111111	2150 GGTCCCACAGGTACTGATGGCCCGAGCCAGGTTGAGCTTCCTGGTGCCGGTT 	2150 GGTCCCACAGCTAGTGGCCCGAGCCAGGCTTGGGCTT CCTGGTGCCGGTCCGGGT 2110			2031 GCTAGGCTTT5IGTTCTGCGCATTTGGCCGCTCTCCGCGCATCCCCCCTAAGGCATG 	1972 CAGCCACTGCAGTTCCTTTCTTCGTGGG-TAACAG 1072 1011111111111111111111111111111111111	 1912 CCCCCTGTGGGCTTGTCCGGCCTCTGGCCCCCGGGGGCGGGCGGGGGG	1854 CCTCAAATGGAAG-GAGTCCCAGGGGAGATGGGTCC-GGCTGTGGCCATCCAG [1][1][1][1][1][1][1][1][1][1][1][1][1][214 431		0
<pre>1795 cccrccontradeGGTWTCCTGGGCCTGGGAWTTCTGGATTCTGCATTGGATTGAUTUAU 72 ccrcCaAAGGGAWTCTGGGCCTGGGGAWTTCTGGATTCTGCATTGGATTGAUTUAU 1854 ccrtCAAATGGGAWGTGAGCCTGGGGAGGATTCGGATCGGACTGGGCCAACGGG 1854 ccrtCAAATGGGAWGTGAGCTCTGGGAGGATGGGATGGGACGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGG</pre>	<pre>1795 cccrcorrandoscrarcerrandom reconstrated and an analysis and and and any analysis and and and and and and and and and and</pre>	<pre>1795 CCCTCCATAAGGGTATCCTGGGCCTGGAATTCTGCATTGGA-GGTTGGAATGGAA</pre>	 1795 CCCTCCATAAGGGTTATCTGGGGCTGGGATTTGGATTGGGATTGGATGGA	 1795 CCCTCCATAAGGGTTATCCTGGGCCTGAGANTTCTGCATCTGCATTGGAFGGAFGGAFGGAFGGAFGGAFGGAFGGAFGGAFG	 1795 CCCTCCATAAGGGTATCCTGGGCCTGAGATTCTGCATTCGCATTGGCATTGGCATGGGTATCCCCCTTACAGG 1814 CCCCCATAGGGTATCCTGGGCTGGGTATCTGCATTGGCATTGGCATTGGCATGGGTAGGGTATCGGGTATGGGAGTGGGTAGGGTAGGGTAGGGTAGGGTAGGGTAGGGTAGGGTAGGGTAGGGCATGGGAGTGGGCATGGGAGTGGGCATGGGAGTGGCATGGGAGTGGGTAGGGCATGGGGAGTGGCATGGGAGTGGCATGGGGAGGGCAGGGGTGGGGTGGGCAGGGGTGGGGTGGGCAGGGGCAGGGGGGGG	 1795 CCCTCCATAAGGGTATCCTGGGCCTGAGAATTCTGCATTGGCATTGGCATGGGATGGGTATCCTGGGTATCGGGTATCCTGCGTTGGCATTGGCATTGGCATTGGCATGGAAGGGTATCCTGCGTATGGGAATTCTGCATTGGCATTGGCATGGGAGGGGGAGGGGGGGG	 1795 CCCTCCATAAGGGTATCCTGGGCCTGAGAATTCTGCATTGCATTGGA-GGATGGACGGTATCTGCATTGGATGAGGTATCCTGGGCATTGCATGAGGTATCTGCATTGGATGAGGTATCCTGGGATAGGGATTCTGCATTGAATTCTGCATTGGATGAGGATGGGATCGGGATCGGGATCGGGATGGGATGGGATGGGATGGGATCGGATCGGATCGGAGAATCGGAGAATCGGAGATCGGAGATCGGAGATCGGAGATCGGAGAATCGGAGAATCGGAGATCGGAGATCGGAGATCGGAGATCGGAGAAGAAGAATGGAATGGAGAATCGGAGAATCGGAGAATCGGAGAAGAGAAGAGAAGAATCGGAGAAGAAGAATCGGAGAAGAGAAGAATCGGAGAAGAGAGAG	1795 CCCTCCATAAGGTATCCTGGGCCTGAGAATTCTGCATTGGCATTGGCATGGCAGGGCAGGGCAGGGTATCCTGGGCATTGGGCATTGGCATTGGGATGGGTAGGGTATCCTGGGTATGGGGTATCGGGCATTGGGATGGGAAGGGTAGGGAAGGGAAGGGAAGGGAAGGGAAGGGAGGGAGGGAGGGAGGGAGGGAGGGAGGGAGGGAGGGAGGGAGGGAGGGG	<pre>1795 CCCTCCATAAGGGTATCCTGGGCCTGAGAATTCTGCATTGCATTGGCATTGGA GGATGGAGA 72 CCCTCCATAAGGGTATCCTGGGCTGGGGAATTCTGCATTGGCATTGGA GGATGGAG 1854 CCTCCAAATGGAAG GAGTCCGGGGGAATTCTGCATTGGCATTGGCATTGCAG 132 CCTCCAAATGGAAG GAGTCCCGGGGGAGATGGGATCGCCATTGGCATTGCAG 132 CCTCAAATGGAAG GAGTCCCAGGGGAGATGGGATCGCCATGGCATTGCAG 132 CCTCAAATGGAAGTCGCCCGGGGGAGATGGGATCGCGGGGTCGGGCCATCCAG 132 CCTCAAATGGAAGTCGCCCCGGGGGAGATGGGATCGCGCGGGGGGGG</pre>	1795 CCCTCCATAAGGGTATCCTGGGCCTGAGAATTCTGCATCTGCATTGGA - GGATGGACAG 185 72 CCCTCCATAAGGGTATCCTGGGCCTGAGAATTCTGCATTGGA - GGATGGACAG 185 1854 CCTCCATAAGGGTATCCTGGGCCTGAGAATTCTGCATTGGA - GGATGGACAG 185 1854 CCTCCATAAGGGGTATCCTGGGCCATCGGGCCATTGGA - GGATGGACAG 131 1854 CCTCCAAATGGAAG - GGATGCCCGGGGCCATCGGGCCATCGAG 131 1854 CCTCCAAATGGAAG - GGATGGGCCCAGGGGCCATCGAGGCCATCCAG 131 1852 CCTCCAAATGGAAG - GGATGGGCCCGGGGGAGGAGGCCAATCGAG 131 1912 CCCCCGGGGGCAGGGGGGAGAAGGGGCCCGGGGGCCGGGGCCAACCAG 137 1912 CCCCCGGGGGCTGGGCCCCGGGGGGGGGGGGGGGGGGG	1795 CCCTCCATAAGGGTATCCTGGGCCTGAGAATTCTGCATCTGCATTGGA-GGATGGACAG 185 72 CCTTCCATAAGGGTATCCTGGGCCTGAGAATTCTGCATTGGATGGA	1795 CCCTCCATAAGGSTATCCT3GGCCT3GGAATTCTGCATCTGCATTGGA-GGATGGACAG 185 72 CCCTCCATAAGGSTATCCT3GGCCT3GGAATTCTGCATTCGCATTGGATGGATGTATCGA 131 73 CCCTCCATAAGGSTATCCT3GGGCCT3GGAATTCTGCATTCGCATTGGATGGATGTATCGA 131 185 CCCTCCATAAGGSTATCCT3GGGGCGGGGGGGGGGGGGGCTGCGGGCATGCAG 131 185 CCTCCAATGGAAG-GAGTCGGGGGGGGGGGGGGGGGGGGCGGCGGCCATCCAG 191 132 CCTCAAATGGAAGGTGGGTCCCGGGGAGAATGGGCTCCAGGGCTGGGCGGGGGGGG	195 CCCTCCATAAGGSTATCCTGGGCCTGGGAATTCTGCATCTGCATGGA-GGATGGACAG 185 		179. 71		
<pre>1735 CTACAAAGGGGACTCCCACAGTGGCCCTCACTTGGTGGTTTTTGAGGGCCGCCCCCG 1735 CCCTCCACTAAGGGGTATCCTGGGGTTGGCATTTGAGGGCCGCCCCCCG 1735 CCCTCCACTAAGGGGTATCCTGGGGATGGGATTTGGCATTGGCATTGGCATTGGGATGGGATGGGATGTGGGATGGAGAGGAAGTGGAAGGAGGGG</pre>	<pre>1735 CTACAMAGGGGATGCTCAAGTGGCTCAGCTTGGCTTGGCGATTTTGAGGGCCCCCCCC</pre>	<pre>1735 CTACAMAGGGACTCCTACAGTGGCTCAGCTGGTGGTGGTTGGTGGTGGTGGTGGTGGTGGTGGTGGT</pre>	<pre>1735 CTACAMAGGGACTCCTACAGTGGCCTCAGGTGGTGGTTTTTTAGGGGCCCCCCCC</pre>	 1735 CTACAMAGGGGATTGCTCACAGTGGCTCAGCTTGGTTTTTTTTTT	 1735 CTACAAAGGGGACTGCTCAGGTGGCTTGGTGGTTGTTGGACTTGGGGCTCGGGGTGGCTCGGGCTCGGGTTGGTGGTTGGTTTGAGGGCCCCCCGGG CTACAAAGGGGGTATCCTGGGCTCAGGTGGCTTGGTTTTGAGGGCCCCCCCGG CTACAAGGGGGTATCCTGGGCTCGGGGCTCGGGGGCTGGGGCCCCCCCGG CCCCCATAAGGGGTATCCTGGGCTCGGGGGTCGGGGCTGGGGCTCGGGGTCGAGGT CCCCCATAAGGGTTCCTGGGCCTGGGGGTCGGGGTCGGGGTCGGGGTGGGGTTGGAG 132 CCCCAAATGGAAG-GAGTCGCGGGGGAGGTGGGGTCGAGGGTCGAGGGTCCAGG 1932 CCCCAAATGGAAG-GAGTCGCGGGGGGGGGGGGGGGGGGG	 1735 CTACAAAGGGGACTGCTCAGTGGCCTCAGTTGGCGGTTTTTGAGGGGCCCCCCCG CTACAAAGGGGACTGCTCAGTGGCCTCAGTTGGTGGTTTTTGAGGGGCCCGCCC	 1735 CTACAAAGGGGACTGCTCAGTGGCCTCAGTGGCTTGGTGGTTTTGAGGGGCGCGCCCCGG CTACAAAGGGGACTGCTCAGTGGCCTCAGCTTGGTGTTTTGAGGGGCCGCCCCGG CTACAAAGGGGTATCCTGGGCCTGAGTTGGTGTTTGGCATTGAGGGGCCCCCCGG CCTCCATAAGGGTATCCTGGGCCTGGGACTTGGCATTGGAGTGGGGCCCCCCGG CCCCCTGTGAGGGTATCCTGGGCCTGGGAATTCTGCATTGGCATTGGAGGCCCCCCGG 1795 CCCCCATAAGGGTATCCTGGGCCTGGGAATTCTGCATTGGCATTGGAGGCCCCCCGG 132 CCTCCAAATGGAAG-GAGTCCTGGGCCTGGGGCTCGGGGGTGGGGGCGAGCAG 132 CCTCCAAATGGAAG-GAGTCCCGGGGGGGGGGGGGGGGGG	 1735 CTACAAAGGGGACTGCTCAGTGGCCTCAGTGGCTTGGTGGTTTTTGAGGGGCGCCCCCGG CTACAAAGGGGGACTGCTCAGTGGCCTCAGCTTGGTGTTTTTGAGGGGCCCCCCGG CTACAAAGGGGGACTGCTCAGGTGGCCTGAGTTGGTGTTTTTGAGGGGCCCCCCGGG CTACAAAGGGGTATCCTGGGCCTGAGGTTGGTGTTTTGAGGGGCCCCCCGGG CCCCCCTGTAAGGGTTTCTTGGGCCTGAGGTTCGGCATTGGA - GGATGGGCCCCCCGG CCCCCCTGTAAGGGTTTCTTGGGGCCTGAGGGTCCGAGGGTCC-GGCTGGGGGCCATCCAG 1854 CCTCCAAATGGAAG-GGGCCCGGGGGAGATTCTGCCTCGCCATTGGCATTGGAG-GGATGGAAGG 11 	 1735 CTACAAAGGGGACTGCTCAGTGGCCTCAGTGGTGGTTTTGAGGGGCGCCCCCGG 1795 CTACAAAGGGGACTGCTCACGGTGGCCTCAGTTGTTGGTGGTTTTGAGGGGCCCCCCGGG 1795 CCTCCAAAGGGGACTGCTCAGGGCCTGAGAATTCTGCATCTGCATTGAGGGCCCCCCCGG 1795 CCTCCAAATGGAAG GGCTCCAGGGCGTGAGAATTCTGCATTGGCATTGGAGGGCCCCCCGGG 1854 CCTCAAATGGAAG GGCTCCAGGGGCGTGAGAATTCTGCATTGGCATTGGAGGGCTCAGG 1854 CCTCAAATGGAAG GGCTCCCAGGGGGAGAATTCTGCATTGGCATTGGAGGGCTCAGG 1854 CCTCAAATGGAAG GGCTCCAGGGGGCTGGGGGCTCCGCGGGGGGCATAGGGAGGCTCCCGGGGGGGG	 1735 CTACAAGGGGGACTGCTCACAGTGGCCTCAGCTGGTGGTGTTTGGGGGGCGCCCCCCGG 179 1795 [[1735 CTACAAAGGGGACTGCTCACAGTGGCCTCAGCTTGGCGTTGGGGGCGCCCCCCGG 179 12 CTACAAAGGGGACTGCTCAGTGGCCTCAGGTGGTTTTGAGGGGCCGCCCCCGG 71 13 CTACAAAGGGGACTGCCAGGTGGCCTCAGGTGGCTTTTGAGGGGCCGCCCCCGG 71 1795 CCCTCCATAAGGGTATCCTGAGTGGCCTCAGGTGGCTTTTGGAGTGGACGGCCCCCCGG 131 1795 CCCTCCATAAGGGTATCCTGAGTGGCCTGAGAATTCTGCATTGGCATTGGAGGGAG	<pre>1735 CTACAAAGGGGACTGCTCACAGTGGCCCTCAGCTTGGGGGCGCGCCCCCGG 179 12 [</pre>	1735 CTACAAAGGGGACTGCTCACAGTGGCCTCAGCTTGGTGGTGTTTGAGGGGCCCCCCCG 179 111111111111111111111111111111111111	1735 CTACAAAGGGGACTGCTCACAGTGGCCTCAGCTTGGTGGCGCCCCCCGG 179. 111111111111111111111111111111111111	6; Length 591; 21; 7; Indels 7; Gaps	17.6%; Score 483.8; D 97.5%; Pred. No. 1.3e- vative 0; Mismatches	Query Mato Best Loca Matches
<pre>March march march model m</pre>	<pre>Match int 17.6% Seede 40: 3, 9 D5 i length 591; actches 55; Conservative 0; Mismatches 7; Indels 7; Gaps 173 GracoAAGGGGATGCTCAGGTGGCTCAGGTGGTGGTGTTTTAGGGGCCCCCCCC</pre>	<pre>Match. 17.6% Secore 493.3, DB 5, Length 591, matches 55; Connervative 0, Mismatches 7; Indels 7, Gaps 173 Charlestyr 97.5% Pread 173 Charlestyr 97.5% Pread 173 Charlestyr 97.5% Pread 173 Charlestyr 97.5% Pread 173 Charlestyr 97.5% Pread 174 Charlestyr 97.5% Pread 175 Charlestyr 97.5% Pread 185 Charlestyr 97.5% Pread 192 Charlestyr 97.5% Pread 193 Charlestyr 97.5% Pread 194 Charlestyr 97.5% Pread 195 Charlestyr 97.5% P</pre>	<pre>Natch. 17.6% Score 433 J; DB 5; Length 591; Active 555; Conservative 0; Mismaches 7; Indels 7; Gaps 1735 CTACAAAGGGAACTGCTAAGTGGGCTTAGGTGGATTTTAAGGGCCGCCCCGG 1735 CTACAAAGGGAACTGCTCAAGTGGCTTAGGTGGATTTTAAGGGCCGCCCCGG 1735 CTTCAAAGGGAACTGCTCAAGTGGCTTAGGTGGATTTTAAGGGCCGCCCCGG 1735 CTTCAAAGGGAACTGCTCAAGTGGCTTAGGTGGATTTTAAGGGCCGCCCCGG 1735 CCTCCAAAGGGAACTGCTCAAGGTGGCATTTGAGGGCCGTCCCGG 1735 CCTCCAAAGGGAACTGCTCAGGGCAATTGGCATTGGGCGATTGGAGGATTCCCCCCCC</pre>	<pre>Natch. 17.6% Score 433 % DB 6; Length 591; hest Local Similarity 77.5% Fred. No. 1.3 = 121; list TroAMAGGGAACTGCTAAGTGGCCTCAGCTGGTGGTGGTTTTGAGGGGCGGGC</pre>	<pre>NMECH 17.61; Score 403.9; DB 5; Length 591; Actober 555; Cranservative 0; Mismatches 7; Irdels 7; Gaps 1735 Cranservative 0; Mismatches 7; Irdels 7; Gaps 1932 Creticanadescritercondecoradametricacturedarandametric 1932 Creticanadescritercondecoradametricacturedarandametric 1932 Creticanadescritercondecoradametricacturedarandametric 1932 Creticanadescritercondecoradametricacturedarandametric 1932 Creticanadescritercondecoradoradescritercondecoradorades 1932 Creticanadescritercondecoradoradescritercondecoradorades 1932 Creticanadescritercondecoradoradescritercondecoradorades 1932 Creticanadescritercondecoradoradescritercondecoradorades 1932 Creticanadescritercondecoradoradescritercondecoradorades 1932 Creticanadescritercondecoradoradescritercondecoradorades 1933 Creticanadescritercondecoradoradescritercondecoradorades 1933 Garadescritercondecoradoradescritercondecoradorades 1933 Garadescritercondecoradoradescritercondecoradorades 1933 Garadescritercondecoradoradescritercondecoradorades 1933 Garadescritercondecoradoradescritercondecoradorades 1933 Garadescritercondecoradoradescritercondecoradorades 1933 Garadescritercondecoradoradescritercondecoradorades 1934 Mismatchestercondecoradoradescritercondecoradorades 1935 Garadescritercondecoradoradescritercondecoradorades 1936 Garadescritercondecoradoradescritercondecoradorades 1937 Garadescritercondecoradoradescritercondecoradorades 1938 Garadescritercondecoradoradescritercondecoradorades 1939 Garadescriterenterco</pre>	<pre>bury Match bury M</pre>	<pre>buery Match buery Match buery Match 17.64; Score 483.8; DB 6; Length 591; lest Local Similarity 97.34; Pred. No. 1.38-121; lest Local Similarity 101101101101101101101101101101101101101</pre>	<pre>buery Match 17.6%; Score 483.8; DB 6; Length 591; lest Local Similarity 97.5%; Pred. No. 1.3e-121; lest Local Similarity 10.00000000000000000000000000000000000</pre>	<pre>buery Match 17.6%; Score 483.8; DB 6; Length 591; set Local Similarity 97.5%; Pred. No. 1.3e-121; lest Local Similarity 10; line line line line line line line line</pre>	<pre>buery Match 17.6%; Score 483.8; DB 6; Length 591; atches 555; Conservative 0; Mismatches 7; Indels 7; Gaps 6 1735 CransadeGGGACTGCACGAGGGCCTGGACGTGGGGGCGCGCCCCCGG 179 [</pre>	<pre>buery Match 17.6%; Score 483.8, DB 6; Length 591; sest Local Similarity 97.5%; Pred. No. 1.3e-121; latches 555; Conservative 0; Mismatches 7; Indels 7; Gaps 6 1735 cracAadeGGGACGCTCAGTGGCTTGGCTTGGGGTTGTGGGGGGGCGCCCCCGG 71 12 CTAAAGGGGGACGCTCAGTGGCCTGGGTTGGTGGTTTTGAGGGCCGCCCCCGG 71 13 cracAadeGGGTATCCTCAGTGGCCTGGGTTGGTGGTTTTGGGGGCCGCCCCCGG 71 13 cccrcCaTaAGGGTATCCTGGGTGGGTGGTGGTGGTTTGGGGCGCCCCCCGG 71 13 cccrcCaTaAGGGTATCCTGGGTGGGTTGGTGGTTTGGGGCGTTGGGA GGATGGGGCCCCCCCGG 71 13 cccrcCaTaAGGGTATCCTGGGCTGGGCTTGGGTGTTTGGGGCGTTGGGA GGATGGGGCCCCCCCGG 71 13 cccrcCaTaAGGGTATCCTGGGCTGGGGCTGGGGTGTTGGGGGCGTTGGGA GGATGGGGCCTGCGG 71 13 cccrcCaTaAGGGTATCCTGGGCTGGGGGTGGGGGCGTTGGGA GGATGTGGGGCGTGGGGGCGTGGGGCGTGGGGGCGTGGGGCGTGGGGGCGTGGGGCGGC</pre>	Duery Match 17.6% Score 483.8% DB 6; Length 591; Best Local Similarity 97.5%; Pred. No. 1.3e-121; 7; Gaps 6 Iatches 555; Conservative 0; Mismatches 7; Indels 7; Gaps 6 1735 Canservative 0; Mismatches 7; Japs 6 1735 Canservative 0; Mismatches 7; Japs 6 1735 Cancecracadeoscracacraceccracacarregosccacccccccccccccccccccccccccccccccccc	<pre>buery Match 17.6%; Score 483.8; DB 6; Length 591; sest Local Similarity 97.5%; Pred. No. 1.3e-121; latches 555; Conservative 0; Mismatches 7; Indels 7; Gaps 6 1735 CTACAAAGGGGACTACACATAGCCCTAGGCTTGGTGTTTTGAGGGGCGCCCCCCGG 179 </pre>	<pre>buery Match 17.6%; Score 483.8% DB 6% Length 591% sett Local similarity 97.5%; Pred. No. 1.3e-121% latches 555% Conservative 0% Mismatches 7% Indels 7% Gaps 6 1735 CTACAAAGGGGACTGCTCACAGTGGCCCTCAGGTGGTGGTGGTGGCGGGGGGGG</pre>	0 U; 0 Other	591 BP; 106 A; 166 C; 172 G; 147 T;	
<pre>Sequence 51 B7, 106 Å, 166 C, 173 G, 147 T, 0 U, 0 Ocher; WerY Match Metch S55; Conservative 0; Mismatches 7; Indels 7; Gaps 1735 FTARAMAGGABATTOTATTGGCTAGGTTGGTGGTGGTGGGGCGCGCCCCC 1735 FTARAMAGGABATTOTACTAGGTCTAGGTTGGTGGTGGTGGGGGGGGCGCCCCCCCC</pre>	<pre>Sequence 531 BP; 106 Å; 166 C; 173 G; 147 T; 0 U; 0 Other; March as islarity 7: %; scree 403 as D \$6; Length 591; atches 555; conservative 0; Mismatches 7; Indels 7; Gaps 1735 CrACAMAGGGANCTCCACACACACACACACACACACACACACACACACAC</pre>	<pre>Sequence 591 BP; 106 A; 166 C; 173 C; 147 T; 0 U; 0 other; merry Match sequence 555; Conservative 0; Mismatches 121; Indels 7; Gaps 173 Gracomacgeoarcreative 0; Mismatches 7; Indels 7; Gaps 173 Gracomacgeoarcreatewartive 0; Mismatches 7; Indels 7; Gaps 173 Gracomacgeoarcreatewarterchanderreatemandant 2 CHUMMINTHININIIIIIIIIIIIIIIIIIIIIIIIIIIIIII</pre>	<pre>Sequence 591 BP; 106 A; 166 C; 173 C; 147 T; 0 U; 0 other; mery Match. 175 Grantaryty 97:5%; 5core 403 3; DB 6; Length 591; merches 25; Connervative 0; Miamaches 7; Indels 7; Gaps 179 Cinternational (11). 171 Cinternational (11). 179 Cinternational (11). 171 Cinternational (11). 171 Cinternational (11). 171 Cinternational (11). 171 Cinternational (11). 172 Cinternational (11). 173 Cinternational (11). 173 Cinternational (11). 174 Cinternational (11). 174 Cinternational (11). 175 Cinternational (11). 175 Cinternational (11). 175 Cinternational (11). 175 Cinternational (11). 176 Cinternational (11). 177 Cinternational (11). 177 Cinternational (11). 178 Cinternational (11). 178 Cinternational (11). 178 Cinternational (11). 179 Cinternational (11). 179 Cinternational (11). 171 Cinternational (11). 171 Cinternational (11). 171 Cinternational (11). 171 Cinternational (11). 172 Cinternational (11). 173 Cinternational (11). 174 Cinternational (11). 175 Cinternational (11). 176 Cinternational (11). 177 Cinternational (11). 177 Cinternational (11). 178 Cinternational (11). 178 Cinternational (11). 178 Cinternational (11). 179 Cinternational (11). 170 Cinternational (11). 170 Cinternational (11). 171 Cinternational (11). 171 Cinternational (11). 171 Cinternational (11). 171 Cinternational (11). 171 Cinternational (11). 172 Cinternational (11). 173 Cinternational (11). 173 Cinternational (11). 174 Cinternational (11). 175 Cinternational (11). 177 Cinternational (11). 178 Cintern</pre>	<pre>sequence 531 BP, 106 A, 166 C, 173 G, 147 T, 0 U, 0 Other; wery Match atches 552. Conservative 0; Mismatches 7; Indels 7; Gaps atches 552. Conservative 0; Mismatches 7; Indels 7; Gaps 1735 CTACAMAGGGAACTCCTACAGTGGCCTCAGGTGGCTTTGAGGGGCCGCCCCG 1735 CTACAMAGGGAACTCCTCAGAGTGGCCTCAGGTGGTTTTTAGGGGGCCGCCCCGG 1735 CTACAMAGGGAACTCCTCAGAGTGGCCTCAGGTGGTTTTTTAGGGGGCCGCCCCGG 1735 CCCCCATAGGGGAACTCCTCAGGGGGGAAATTCTGGCATTGGAGGGGCGCCCCCGG 1735 CCCCCATAGGGGAACTCCTCAGGGGGGAAATTCTGGCATTGGAGGGGGGGG</pre>	<pre>sequence 591 BP; 106 Å; 166 C; 172 G; 147 T; 0 U; 0 other; mery Match 17.64; Score 403.9; DB 6; Length 591; atches 555; Conservative 0; Mismatches 7; Indels 7; Gaps 1735 CTACAMAGGGGACTCCCAGGTGGGCCTCAGGTTGGGTTTTGAGGGGCCCCCCCG 1735 CTACAMAGGGGACTCCTCAGGTGGGCTTGGGTTTTGAGGGGCCCCCCCG 1735 CTACAMAGGGGACTCCTCAGGTGGGCTTGGGTTTTGAGGGCCCCCCCC</pre>	<pre>sequence 591 BP; 106 A; 166 C; 172 G; 147 T; 0 U; 0 Other; buery Match 17.6%; Score 483.8; DB 6; Length 591; atches 555; Conservative 0; Mismatches 7; Indels 7; Gaps 1735 CracAAAGGGGACTGCTCAGAGGGGCTCAGCTTGGTGTTTTTGAGGGGCCGGCC</pre>	<pre>Sequence 591 BP, 106 A, 166 C, 172 G, 147 T, 0 U, 0 other; bery Match 17.6%; Score 483.8; DB 6; Length 591; est Local Similarity 97.5%; Pred. No. 1.3e-121; latches 555; Conservative 0; Mismatches 7; Indels 7; Gaps 1735 CTACAMAGGGAACTGCTCACAGTGGCCTCAGGTTATGAGGGGCCCCCCCGG CTACAMAGGGAACTGCTCACAGTGGCCTCAGGTTATGAGGGCCCCCCCGG 1795 CTACAMAGGGAACTGCTCACAGTGGCCTCAGGTTATGAGGGCCCCCCCGG 1795 CCCTCATAAGGGTATCCTGGGCCTCAGGTTGGGGCTTTGAGGGCCCCCCCGG 1795 CCCTCATAAGGGTATCCTGGGCCTCAGGTTGGGGCTTTGAGGGCCCCCCGGG 1795 CCCTCAATGGGATTCCTGGGGCTGGGGGCGAGGGGGGGGG</pre>	<pre>Sequence 591 BP; 106 A; 166 C; 172 G; 147 T; 0 U; 0 Other; best Local Similarity 97.5%; Pred. No. 1.3e-121; hatches 555; Conservative 0; Mismatches 7; Indels 7; Gaps 173 Conservative 0; Mismatches 7; Indels 7; Gaps 1795 CcrrccarpagedacrecreaAgregecreaderarrandegedecrecede 1795 CcrrccarpagedacrecreaAgregecreaderarrandegedecrecede 1795 Ccrrccarpagedacrecreadedarrandegregrintandegedecrecede 1795 Ccrrccarpagedacrecreadedarrandegregrintandegedecrecede 1795 Ccrrccarpagedacrecreadedarrandegederarrandegedecrecede 1795 Ccrrccarpagedacrecreadedarrandegederadegedecrecede 1795 Ccrrccarpagedacrecreadedarrandegederadegedecreceded 1795 Ccrrccarpagedacrecreadedarrandegederadegedecreceded 1795 Ccrrccarpagedacrecededacredgearrandegederadegedecreceded 1795 Ccrrccarpagedacredgearrandegederadegederadegedecreceded 1795 Ccrrccarpagedacredgearrandegederadegederadegedecreceded 1912 Cll[1][1][1][1][1][1][1][1][1][1][1][1][1][</pre>	<pre>Sequence 591 BP; 106 A; 166 C; 172 G; 147 T; 0 U; 0 Other; bery Match 17.6%; Score 489.3; DB 6; Length 591; est Local Similarity 97.5%; Pred. No. 1.3e-121; latches 555; Conservative 0; Mismatches 7; Indels 7; Gaps 1735 CTACAAGGGGACTCCTCAAGTGGCCTCAAGTTGGTTTTAAGGGCCCCCCCC</pre>	<pre>Sequence 591 BP; 106 A; 166 C; 172 G; 147 T; 0 U; 0 Other; buery Match 17.6%; Score 483.8; DB 6; Length 591; atches 555; Conservative 0; Mismatches 7; Indels 7; Gaps 6 1735 CracAaAaccoderectcacarredecreacerragerectrarreacecceccecce 179 L2 CTACAAAaccoderectcacarreacercradearreacercaccarreacerccecce 179 L2 CTACAAAaccoderectcacarreacercradearreacerreacecceccecce 185 1795 Ccrecaraacedearreacercradearreacerreacerreacercecce 185 1795 Ccrecaraacedearreacercradearreacercradearreacercecce 185 1795 Ccrecaraacedearreacercradearreacercradearreacercece 185 1795 Ccrecaraacedearreacercradearreacercradearreacerced 185 1795 Ccrecaraacedearreacercradearreacercradearreacerecece 185 1795 Ccrecaraacedearreacercradearreacercradearreacereced 185 1795 Ccrecaraacedearreacercradearreacercradearreacereced 191 1854 Ccrecaraacedeareacercradearreacercradearreacereced 191 1854 Ccrecaraacedeareacercradearreacercradearreacerecedearreace 1854 Ccrecaraacedeareacercradearreacercradearreacerecedearea 191 1854 Ccrecaraacedeareacercradearreacercradearreacerecedearea 191 192 Ccrecaraacedeareacercradearreacerecedeareaceredeareacedea 191 192 Ccrecaraecerreacercradeareacerecedeareacerecedeareaceredeareacerea 1972 Cadecarreacererecedeareareacercradeareareacereace</pre>	<pre>Sequence 591 BP; 106 A; 166 C; 172 G; 147 T; 0 U; 0 Other; bery Match 17.6%; Score 483.8, DB 6; Length 591; set Local Similarity 97.5%; Pred. No. 1.3e-121; latches 555; Conservative 0; Mismatches 7; Indels 7; Gaps 6 1735 CTACAAAGGGGACTGCAGTGGCCCTCAGCTTGGGGTGTTTTGAGGGGCCGCCCCCGG 179 12 CTACAAAGGGGACTGCAGTGGCCCTCAGCTGGGTGGTTTTGAGGGGCGGCCCCCCGG 71 12 CTACAAAGGGGACTGCAGTGGCCCTGAGAATTCTGCATTGGAGGGGCGGCCCCCCGG 71 1795 CCCTCATAAGGGGTAGCCTGAGGGCCTGAGAATTCTGCATTGGAGGGCGGCCCCCCGG 71 1795 CCCTCATAAGGGGTATCCTGGGCCTGAGAATTCTGCATTGGATGGA</pre>	<pre>Sequence 591 BP; 106 A; 166 C; 172 G; 147 T; 0 U; 0 Other; buery Match 17.6%; Score 483.8, DB 6; Length 591; set Local Similarity 97.5%; Pred. No. 1.3e-121; latches 555; Conservative 0; Mismatches 7; Indels 7; Gaps 6 1735 CTACAAAGGGGACTGCAGTGGCCCTCAGGTGGGTGTTTTGAGGGGCCGCCCCGG 71 12 CTACAAAGGGGACTGCAGTGGCCCTCAGGTGGGTGTTTTGAGGGGCGGCCCCCCGG 71 1795 CCCCATAAGGGGACTGCAGTGGCCTGGGTGGGTGTTTTGAGGGGCGGCCCCCCGG 71 1795 CCCCATAAGGGGACTGCAGTGGCCTGGGTGGGTGGTTTTGGAGGGGCGGCCCCCCGG 71 1795 CCCCATAAGGGGACTGCAGGGCCTGGGGTGGGTGGTTTTGGAGGGCGGCCCCCCGG 71 1795 CCCCCATAAGGGGTAACCTGGGCGTGGGTGGGTGGTTTTGGAGGGCGGGC</pre>	Sequence 591 BP; 106 A; 166 C; 172 G; 147 T; 0 U; 0 Other; buery Match 17.6%; Score 483.8, DB 6; Length 591; ast Local Similarity 97.5%; Pred. No. 1.3e-121; latches 555; Conservative 0; Mismatches 7; Indels 7; Gaps 6 1735; Craczaaocococrecacracorrescorreagermogracerrrreageococcocccccc 179; 1735; Craczaaocococrecacracorrescorreagermogracerrrreageococccccccc 77; 1735; Craczaaocococrecacracorrescorreagermogracerrrreageoccccccccc 77; 1735; Craczaaocococrecacracorrescorreagermogracerrrreageoccccccccc 71; 12; Craczaaocococrecacorrescorreageorreagerergeneerrreageocccccccccccc 71; 1795; Creccaraadeorscreageocreageorreagermogracerreagered 185; 1795; Cccrccaraadeorarterreageocreageorreageneerrancecccccccccccccccccccccccccccccc	Sequence 591 BP; 106 A; 166 C; 172 G; 147 T; 0 U; 0 Other; Duery Match 17.6%; Score 483.8; DB 6; Length 591; Dest Local Similarity 97.5%; Pred. No. 1.3e-121; Iatches 555; Conservative 0; Mismatches 7; Gaps 6 1735 CTACAAAGGGGACTGCTCACAGTGGCCTCAGCTTGGTGGTGGTGGGGGGGG	and treatment of breast st. The present sequence	diseases of the bre invention	CC proteir CC cancer XX a codir

Ä 1454 GGGAATGCAGAGCCCTTTGCTTTCCTTGCCGCCTGCTTCCTGTGCGGGACCCGC 1514 The invention relates to an isolated polynucleotide comprising a nucleotide sequence which hybridises to a sequence selected from one of set fully defined sequences jiven in the specification, antiense molecules complimentary to the sequences, the polypeptides encoded by the sequences and antibodies raised against the proteins. The nucleic acids are useful for detecting differentially expressed genes which correlate with a cancerous state of a mammalian cell i.e. diagnosing cancer and deencearcinomal. Modifying the gene products of the mucleic acids adenocarcinomal. Modifying the gene products of of the mucleic acids in gene mapping and tisue profiling. The present sequence is one of the 316 cancer related CDMA sequences 1276 C-TTTTTTAAAAGAATAAAATGACTTGGTTTGCGCTTGGAAGCAGGGGGAAGCATTCAGAT 1334 1335 GAGCGGTTTCTGCATTAACCCTGCCTATCACGCATCTCGTGTCCTGTGTGGCGAGC 1394 128 248 308 309 TGGGCCTTTGGTCTGCATGCCCTGGCCAGGTCCCTCAGGGCCTGATGCGCGCGTAGAAGGACT 368 68 Ĥ 69 CTTTTTTTTAAAAGGAATAAAATGACTTGCGTTTGCGCTTGGAAGCAGGGGAAGGATTCAGAT 189 ¢¢¢¢¢TTĠĠāAĠĠTT¢TĠĠTĠĊTTĊAĠĊTĠĠĊŦĊĊTĠĊAĠAĠŦĊĊAĊĊĊĊĠĊĊĊŦĊĠŦĠĠŦ 249 GGGAATGCAGAGGCCCTTTGCTTTCCTTGCCGCCCGCCTGCTTCCTGGGGACCCGC CCCCCTTGGAAGGTTCTGGTGCTTCAGCTGGCTGCTGCAGAGTCCACCCCGCCTCGTGGT Labat 1; Gaps Sudduth-Klinger J; New human polynucleotides useful for the treatment and diagnosis of Williams LT, Escobedo J, Innis MA, Garcia PD, Sudduth-Klinge Reinhard C, He Z, Randazzo F, Kennedy GC, Pot D, Kasam A; Lameon G, Drmanac R, Czkvenjakov R, Dickson M, Drmanac S, I Leshkowitz D, Gizveijakov V, Ones LW, Stache-Crain B; Length 395; Sequence 395 BP; 70 A; 111 C; 109 G; 105 T; 0 U; 0 Other; 11; Indels 13.0%; Score 357.4; DB 4; 96.9%; Pred. No. 4.4e-87; tive 0; Mismatches 11; TTGAGCAGTGGGCGGCAGCAGTGGCCT 1601 369 rreadcadredredredcadcarredrer 395 Claim 1; Page 202; 240pp; English. ЧH 28-MAR-2000; 2000US-0192583P. ADD49697 standard; cDNA; 295 Query Match 13.0 Best Local Similarity 96.9 Matches 375; Conservative (CHIR) CHIRCN CURP. (HYSE-) HYSEQ INC. WPI; 2001-626251/72. 1395 1455 1575 ADD49697; cancer. RESULT 8 ADD49697 ID ADD4 XX ADD4 AC ADD4 XX I5-J qq \mathcal{S} \mathcal{S} g 8 g 8 qq \mathcal{S} qq q δ 8 q

15-JAN-2004 (first entry)

1.00

08:51:53 2004 2 Thu Dec

Human lung cancer associated cDNA 61594667.	O'm	Query Match Best Local S
Human; ss; lung cancer antigen; cytostatic; lung cancer; gene therapy; vaccine; T-cell; tumour.	Σ	Des
Homo sapiens.	5 7	1725
US2003194764-Å1.		
16-OCT-2003.	δο 	58/T
04-APR-2002; 2002US-00116712.	90 J	61
05-APR-2001; 2001US-0282289P. 05-OCT-2001; 2001US-0327511P.	87 A	121
(CORI-) CORIXA CORP.	δλ ι	1903
Bangur CS, Switzer A;	ସ୍ପ	181
WPI; 2003-844452/78.	δ	1963
New isolated polypeptides and polynucleotides useful for diagnosing, preventing and treating cancer, particularly lung cancer.	qu	241
Claim 1; SEQ ID NO 429; 250pp; English. The invention relates to an isolated polynucleotide (a) comprising any of	ABX	RESULT 9 ABX92048/c ID ABX92048
quèncés appearing as ADD49269 - mulements of (a): sequences of at	XX AC	ABX92048
	X LO	08-MAY-20
ants of (a). Also included ar ig: sequences encoded by the r	XX DE	Lung spec
polynucleotide; any of the 4 amino acid sequences fully defined in the specification; or sequences having at least 70 or 90% identity to the	XX KM	Human; ge
sequence in (a) or (\tilde{b})), an expression vector comprising the above polynucleotide operably linked to an expression control sequence, a host	KW KW	
čeli transformed or transfected with the above expression vector, an isolated antibodv. or its antigen-binding fragment, that specifically	XX SO	Homo sapi
binds to the above polypeptide, an oligonuclectide that hybridises to the above-mentioned nucleotide sequences under highly stringent conditions, a	XX MA	
fusion protein comprising at least one polypeptide cited above, detecting the presence of a cancer in a patient (comprising: obtaining a biological	XX	06-SEP-2(
sample from the patient; contacting the biological sample with a binding	XX	
agent that binds to the polypeptide, or with the oligonucleotide cited above; detecting in the sample an amount of the polypeptide that binds to	XX	72-AON-12
the binding agent, or an amount of a polynucleotide that nypridies to the oligonucleotide, and comparing the amount of polypeptide, or	XX	17 - AON - 77
polynucleotide that hybridises to the oligonucleotide, to a predetermined cut-off value and then determining the presence of a cancer in the	PA XX	(DIAD-) 1
patient), a method for stimulating and/or expanding T-cells specific for a tumour propein (comprision contacting T-cells with the above	Iđ	Macina R <i>1</i>
polypeptide, polynucleotide or antigen-presenting cells that express the	ND Y	WPI; 2002
reprinting the second of the second of a time state of the second second of the second	5 II II II	New isola identify
first component selected from physiological carriers and immunostimulants, and a second component selected from the above	TAX	cancer ai
polypeptide, polynucleotide, antibody, fusion protein, T-cell population and antiden-presenting cells that express the above polypeptide.	Sd	Claim 1;
stimulating an immune response in a patient (comprising administering to the matient the above commonstion) traction duron cancer in a matient	88	The inver of 120 10
comprising administering to the patient the above composition and a diamonetic vit (commistering to the patient the above composition and a	85	specifica diven in
at least one antibody cited above and a detection reagent, where the	388	invention
detection reagent comprises a reporter group). The composition and methods are useful in diagnosing, preventing and treating cancer,	888	They are
particularly lung cancer. The present sequence is a lung cancer- associated antigen cDNA of the invention.	386	invention of ending
Sequence 295 BP; 52 A; 88 C; 88 G; 67 T; 0 U; 0 Other;	38 	encodes a

T; 0 U; 0 Other; 67 ö 88 ΰ 88 Α; 52 BP; 295 Sequence

1782 1842 1902 1962 ö 180 240 120 60 ention describes an isolated human nucleic acid (I) encoding any 10-1533 residue amino acid sequences (S1), given in the action, comprising any of 164 179-11421 base pair sequences (S2), on the specification. The methods and compositions of the present on are useful for identifying, diagnosing, monitoring, staging, and trating lung cancer and non-cancerous diseases of the lung. and used for identifying lung tissue, monitoring and ying and/or designing antagonists of the polypeptide of the nor, gene therapy, production of transgenic animals and production a lung tissue for treatment and research. This sequence a lung specific nucleic acid tted human nucleic acid molecule and polypeptide, useful for ing, diagnosing, monitoring, staging, imaging and treating lung ad non-cancerous diseases of the lung. sne therapy; vaccine; lung specific antigen; cancer diagnosis; onitoring; cancer staging; cancer imaging; lung cancer; erous diseases of the lung; transgenic animal; gene; ss. AGGATGGACGCCTCAAAATGGAAGGAGTCCCCACGGGAGGATGGGTCCGAGGTCCGGCTGTG CTGCTCTTCCTGCTACAAAGGGGACTGCTCACAGTGGCCTCAGCTTGGGGGGG CTGCTCTTCCTGCTACAAAGGGGACTGCTCACAGTGGCGCCTCAGCTTGGTGGTGGTTTTGAGGG GCCGCCCCCGGCCCTCCATAAGGGTATCCTGGGCCTGAGAATTCTGCATCTGCCATTGG GCCCCCCCCCCCCTCCATAAGGGTATCCTGGGCCTGAGAATTCTGCATCGCCTTGG AGGATGGACAGCCTCAAATGGAAGGAGTCCCACGGGAGATGGGTCCGAGGTCCGGCTGTG GCCATCCAGCCCCTGTGGCTTGTCCAGCCTCTGTGCACCCCTGGTGTCTTCACTCCAGG Gaps .: 0 295; 0; Indels Length Score 295; DB 10; Pred. No. 4.7e-70; 0; Mismatches 0; ΰ Liu Sun Y, sific nucleic acid (LSNA) #90. Page 238; 389pp; English. 10.7%; Scc. 100.0%; Pre ς, Ω ЦЦ Chen standard; cDNA; 251 001; 2001WO-US043612. 000; 2000US-0252500P. 003 (first entry) Conservative A, Recipon H, JIADEXUS INC 2-713376/77. imilarity 533-A2. ens. 02.

us-09-989-920-100.rng

08:51:53 2004 2 Thu Dec

į.

3 --

	аr;
	0th
	0
	ő
	0
	Ë
	43
	ö
	54 4
	ΰ
	75
	A;
	79
	BP;
	251
	Sequence
ХХ	ğ

Query M Best Loo Db Db Db Db Db Db Db Db Db Db Db Db Db

		~
		nally
		termin
		tei

1

Page 10

pluripotent cells. The pluripotent cells and partially or terminall differentiated cells can be used in allo-, concomitant- or xeno-transplantetion, cell therapy, tissue and organ augmentation or replacement, and gene therapy. They can also be used for producing chimeric or transgenic animals

- Sequence 736 BP; 202 A; 147 C; 174 G; 213 T; 0 U; 0 Other;

atch2.8%;Score 76.6;DB 3;Length 736;191;Conservative0;Mismatches59;10;2411Cruterceagartegereacrerrangeres59;10;112411	
DB 3; Length 736; e-10; 59; Indels 29; Gaps regreedsratrorsceedsrat 1011, 011, 11, 11, 12, 12, 12, 12, 12, 12, 12,	
DB 3, Length 736; e-10; 59; Indels 29; rggreggagratcraftagg 	
DB 3; Length 7 e-10; 59; Indels TGGTGGGAGTATCTG TGGTGGGAGTATCTG 	
DB 3, Le 6-10; 59; 1 10, 10, 10 10, 11, 10, 10 10, 11, 10, 10, 10, 10, 10, 10, 10, 10,	
Score 76.6; DB 3; Pred. No. 5.4e-10; 0, Mismatches 59; CTCTTTCTAAGGTGGTG CTCTTTCTAAGGTGGTGG TGTCTTTCTAAGGTGGTGG TGTCTTTTTTTTTAAGGTGCTGGG TGTCTTTTTTTTTAAGGTGCTGGGG TGTCTTTTTTTTTACCTGAATAA [
Scort Pred MCTCTT MCTCTT MCTCTT MCTCTT MCTCTTT MCTCTTT MCTCTTT MCTCTTT MCTCTTTTT MCTCTTTTTTTT	38 BP.
2.8%; ve (666764 611111 6111111 6111111 61111111 6111111	1, 3203
ty lervat i lervat i cragatic cragatic datic datic atatic atatic atatic atatic atatic atatic atatic atatic	d, DNP
milari cons cons fructor decorr derostor derostor dator adado	tandar
Query Match 2.8% Best Local Similarity 68.5% Matches 191; Conservative Matches 191; Conservative Astructorcadartegered 2471 CTTTCTCCAGATTegered Astructorcadartegered 2831 Geoccrtadeartegered Astructorcadartegered 2531 Geoccrtadeartegered Astructorcadartegered 2531 Geoccrtadeartegered Astructorcadartegered 1 539tccadartegered 1 539tccadartegered 1 539tccadartegered 1 550 dartegreeraartegered 2590 dartegreeraartegered 655 dartegreeraartegered 2647 Teraccartegreered 655 dartegreeraartegered 655 daterefered 658 daterefered 1 658 daterefered 1 698 raaacreerartegreeraartegreeraartegreeraartegreeraartegereraart	877/c AAK90877 standard; DNA; 32038 BP
Query M Best Lo Best Lo Matches D D D D D D D D D D D D D D D D D D D	AAK90877/c ID AAK90 XX
S S S S S S S S S S S S S S S S S S S	¥2X:

- AAK90877;
- 05-NOV-2001 (first entry)
- Human digestive system antigen genomic sequence SEQ ID NO: 4453.

- Human; digestive system antigen; gene therapy; cancer; appendicitis; ulcerative colitis; infection; Hirschsprung's disease; chronic colitis; digestive system disorder; Meckel's diverticulum; ds.
- Homo sapiens.
- WO200155314-A2.
- 02-AUG-2001.
- 17-JAN-2001; 2001WO-US001324

- 31-JAN-2000; 2000US-0179065F 24-FEB-2000; 2000US-018628F 24-FEB-2000; 2000US-0186654F 02-MAR-2000; 2000US-01805474F 17-MAR-2000; 2000US-01807474 17-MAR-2000; 2000US-019076F 19-MAY-2000; 2000US-0190176F 19-MAY-2000; 2000US-02034657F 07-JUN-2000; 2000US-0215135F 07-JUN-2000; 2000US-0216477F 28-JUN-2000; 2000US-0216477F 07-JUL-2000; 2000US-0216477F 07-JUL-2000; 2000US-0216477F 07-JUL-2000; 2000US-0216477F 2000US-0216880P. 2000US-0217487P. 2000US-0217496P. 11-JUL-2000;

14-JUL-2000; 2000US-0218290P. 26-JUL-2000; 2000US-0220963P. 26-JUL-2000; 2000US-0220963P.

004
0
0
3
53
••
н
S
••
ω
õ
2
υ
ወ
Dec
Thu
д
н

PR 08-NOV-2000; 2000US-0246477P. PR 08-NOV-2000; 2000US-0246478P. PR 08-NOV-2000; 2000US-0246329P. PR 08-NOV-2000; 2000US-0246523P. PR 08-NOV-2000; 2000US-0246525P. PP 08-NOV-2000; 2000US-0246525P.	08-NOV-2000; 08-NOV-2000;	08-NOV-2000;	08-NOV-2000;	08-NOV-2000;	17-NOV-2000;	17-NOV-2000;	17-NOV-2000;	17-NOV-2000;	17-NOV-2000; 17-NOV-2000;	17-NOV-2000;	01-DEC-2000;	05-DEC-2000;	05-DEC-2000;	05-DEC-2000; 06-DEC-2000;	08-DEC-2000;	08-DEC-2000;	08-DEC-2000;	08-DEC-2000;	11-DEC-2000; 05-JAN-2001;	ампи (-ампи)		I Rosen CA, Barash SC, Ruben SM;	R WPL; 2001-502630/55.	Doliminal actidae anaodina direstive svetem antigens useful	diagnosing, treating, preventing and/or prognozing disorders	digestive system, particularly cancer and cancer merasuas		The present invention provides the protein and coding sequences of	number of human digestive system antigens. These can be used in diagnosis, treatment and prevention of digestive system disorder	including cancer, Meckel's diverticulum, bacterial or infections, appendicitis, Hirschsprung's disease, chro	ulcerative colitis. The present sequence is a genomic DNA fragme encoding a digestive system antigen of the invention	Sequence 32038 BP; 9776 Å; 5476 C; 59	Duerv Match 2.7%; Score 75;	1.3e-08; ches 60; Indels	QY 1013 AAAAAAAATTCTTATTTTAGTAGACATGTATTTTACCAAAAAAATATGTACTCAATTATT								
	, <u>н</u> н , н н	H C	1 1	5	5 H	E F	11	Ц Ц	1 E	Ц	5		H	击 b	5.42	H	5. E	12	6.6		E i		5	22	22	I.	66	Qã	:2	23	28	22	L D. I	r X	ជ័ន៍	39	ប ប	ΰŭ	ŏŏ	Хÿ			6

3

TACTCAATTATT 1072

 $14-\text{AUG}-2000; 2000US-0224519P. \\ 14-\text{AUG}-2000; 2000US-0225164P. \\ 14-\text{AUG}-2000; 2000US-02252564P. \\ 14-\text{AUG}-2000; 2000US-02252564P. \\ 14-\text{AUG}-2000; 2000US-0225264P. \\ 14-\text{AUG}-2000; 2000US-0225169P. \\ 22-\text{AUG}-2000; 2000US-0225169P. \\ 22-\text{AUG}-2000; 2000US-022264PP. \\ 22-\text{AUG}-2000; 2000US-022143PP. \\ 22-\text{AUG}-2000; 2000US-022142PP. \\ 22-\text{AUG}-2000; 2000US-0221428PP. \\ 22-\text{AUG}-2000; 2000US-022148PP. \\ 22-\text{AUG}-2000; 2000US-0221428PP. \\ 22-\text{AUG}-2000; 2000US-0221428PP. \\ 22-\text{AUG}-2000; 2000US-0221428PP. \\ 22-\text{AUG}-2000; 2000US-0221428PP. \\ 22-\text{AUG}-2000; 2000US-022148PP.$

Thu Dec 2 08:51:53 2004

a 1²-

... K

us-09-989-920-100.rng

-

000US-02289247 000US-02289287 000US-02293437 000US-02293447 000US-02293447 000US-02293447 000US-02294437 000US-02294377 000US-02294372427 000US-02312437 000US-02312437	200005 -0232880 200005 -0232880 200005 -0232898 200005 -0232898 200005 -0232898 200005 -0232898 200005 -0232898 200005 -0232868 200005 -023868 200005 -023868 200005 -023868 200005 -023868 200005 -023868 200005 -02388 200005 -023888 200005 -0238888 200005 -0238888 200005 -0238888 200005 -0238888 200005 -00	200005 - 02417 855 20005 - 02417 855 20005 - 02418 826 20005 - 02418 826 20005 - 02418 826 20005 - 02418 756 20005 - 02416 776 20005 - 02416 728 20005 - 02416 528 20005 - 02416 5005 - 02416 508 20005 - 02416 508 20005 - 02416 50
0 - AUG-2000 - AUG-2000 - AUG-2000 - AUG-2000 	SEP 2000 SEP	0-0-001-2000 0-001-2000 0-001-2000 0-001-2000 1-0001-2000 0-001-2000 1-0001-2000 8-000-2000 8-000-2000 8-000-2000 8-000-2000 8-000-2000 8-000-2000 1-
ਲ ਲ ਲ ਲ ਲ ਲ ਲ ਲ ਲ ਲ ਲ ਲ ਲ ਲ		* * * * * * * * * * * * * * * * * * * *

5

19.00² -

h Lennin Se

٠

•

AAS30028/c ID AAS30028 standard; DNA; 32038 BP. XX AC AAS30028; DT 21-NOV-2001 (first entry) XX DT 21-NOV-2001 (first entry) XX DE Human lung antigen genomic DNA #98.	XX Lung antigen protein; human; mouse; rabbit; goat; horse; cat; dog; KW chicken; sheep; immunosupressive; antiarthritic; vasotropic; antirheumatic; antiproliferative; cytostatic; cardiant; neuroprotective; KW cerebroprotective; nootropic; antibacterial; virucide; fungicide; cancer; KW ophthalmological; vulnerary; gene therapy; autoimmune disease; neoplasm; Myperproliferative disorder; breast; liver; cardiovascular disorder; ds; KW fungal infection; viru infection; system disorder; endocrine disorder; KW dungal infection; viru disorder; respiratory disorder; KW wound healing; skin aging; organ transplantation; food preservative; KW wound saptens. XX WO200155303-A2.	02-AUG-2001. 17-JAN-2001;	51-UAN-2000 04-FEB-2000 24-FEB-2000 02-MAR-2000;	16-MAR-2000; 17-MAR-2000; 18-APR-2000; 19-MAY-2000; 19-MAY-2000; 07-JUN-2000;	28-JUN-2000; 30-JUN-2000; 07-JUN-2000;	FR 07-UUL-2000; 2000US-021680F. FR 11-UUL-2000; 2000US-0217487P. FR 11-UUL-2000; 2000US-0217487P. FR 14-UUL-2000; 2000US-0218290F. FR 14-UUL-2000; 2000US-0218290F. FR 14-AUG-2000; 2000US-0224518P. FR 14-AUG-2000; 2000US-0224518P. FR 14-AUG-2000; 2000US-0224513P.	14 - AUG - 2000 14 - AUG - 2000 14 - AUG - 2000 14 - AUG - 2000	14-AUG-2000; 14-AUG-2000; 14-AUG-2000; 14-AUG-2000;	14 - AUG-2000 18 - AUG-2000 22 - AUG-2000 22 - AUG-2000 22 - AUG-2000 30 - AUG-2000 30 - AUG-2000	01-SEP-2000 01-SEP-2000 01-SEP-2000 01-SEP-2000 05-SEP-2000 05-SEP-2000 06-SEP-2000 06-SEP-2000
17-NOV-2000 17-NOV-2000 17-NOV-2000 17-NOV-2000 17-NOV-2000 17-NOV-2000 17-NOV-2000 17-NOV-2000 17-NOV-2000 17-NOV-2000 17-NOV-2000	ССССССССССССССССССССССССССССССССССССС	08-DEC-2000; 11-DEC-2000; 05-JAN-2001;	Rosen CA,	DR WPI; 2001-502630/55. XX PT Polynucleotides encoding digestive system antigens, useful for PT diagnosing, treating, preventing and/or prognozing disorders of the PT digestive system, particularly cancer and cancer metastases.	Disclosure; SEQ ID NO 3556; 986pp;	The present invention provides the protein and coding sequences of a commoler of human digestive system antigens. These can be used in the CC number of human digestive system antigens. These can be used in the CC diagnosis, treatment and prevention of digestive system disorders, CC including cancer, Meckel's diverticulum, bacterial or parasitic transformers, appendicitis, Hirschsprung's disease, chronic colitis or ulcerative system antigen of the invention NA fragment XX Semence 32018 BP 9776 A 54547 (5463 d: 10823 T. O. D. D. D. D. D. D. S. Semence 32018 BP 9776 A 5454 d: 10823 T. O. D. D. D. D. D. D. D. D. S. Semence 32018 BP 9776 A 5454 d: 10823 T. O. D. D. D. D. D. D. S. S. Semence 32018 BP 9776 A 5454 d: 10823 T. D. S. S. Semence 32018 BP 9776 A 5454 d: 10823 T. D. S. S. Semence 32018 BP 9776 A 5454 d: 10823 T. D.	occurred of the second se	QY 1013 AAAAAAAATTUTTATTTTTAGTAGACATGTATTTACCAAAAATATGTACTCAATTATT 1072 	QY 1073 GTATTTTGGATTTATCAATTTAAAAATTGTGGAAATTTGTTTG	Db 28759 GTATCTACATACAATCTCACATTTACCTCTTAGCCCACAAAGCTTATTACTAT 28700 Qy 1179 CTAGCCGTTACAGAAAAAGTCTGCTGACTACTGAGCCAGAACC 121 Db 28699 CTGGCCCTTATAGAAAAGTTTCCTGACCTCGAGCC 1221 Db 28699 CTGGCCCTTATAGAAAAAGTTTCCTGACCTCGAGCCTAGAGC 28657 RESULT 13 3

Thu Dec 2 08:51:53 2004

us-09-989-920-100.rng

Page 14

000US-0231242 000US-0231243 000US-0231243 000US-02314141 000US-023141414 000US-02312161 000US-0232399 000US-0232399 000US-0232399 000US-0232399 000US-0232399 000US-0232399 000US-0232399 000US-02323964	4442 4225 4225 4225 4225 4225 4225 4225	00005-02417876 00005-02418808 00005-02418808 00005-02418808 00005-02418269 00005-0246474 000005-0246474 000005-0246523 000005-0246500000000000000000000000000000000000	000US-0249208P 000US-02492092 000US-0249211P 000US-0249212P 000US-0249213P 000US-0249213P 000US-0249213P 000US-0249213P 000US-0249216P 000US-0249216P 000US-0249218P 000US-0249218P 000US-0249218P 000US-0249218P 000US-0249218P 000US-0249218P
8-SEP-2003 8-SEP-2003 8-SEP-2003 8-SEP-2003 8-SEP-2003 8-SEP-2000 8-SEP-2000 8-SEP-2000 8-SEP-2000 4-SEP-2000 4-SEP-2000 4-SEP-2000 4-SEP-2000 4-SEP-2000 4-SEP-2000 4-SEP-2000 4-SEP-2000 4-SEP-2000 4-SEP-2000 4-SEP-2000 4-SEP-2000 4-SEP-2000 4-SEP-2000 4-SEP-2000 4-SEP-2000 4-SEP-2000 5-SEP-2000 5-SEP-2000 5-SEP-2000 5-SEP-2000 5-SEP-2000 5-SEP-2000 5-SEP-2000 5-SEP-2000 5-SEP-2000 5-SEP-2000 5-SEP-2000 8-SEP-20000 8-SEP-2000	$\begin{array}{c} 14 - 58P - 2000 \\ 221 - 58P - 2000 \\ 221 - 58P - 2000 \\ 225 - 58P - 2000 \\ 227 - 58P - 2000 \\ 229 - 500 \\ 229 - 500 \\ 229 - 500 \\ 229 - 500 \\ 229 - 500 \\ 220 - 500 \\ 200$	00CT-2000 00CT-2000 00CT-2000 00CT-2000 00CT-2000 8-NOV-2000 8-NOV-2000 8-NOV-2000 8-NOV-2000 8-NOV-2000 8-NOV-2000 8-NOV-2000 8-NOV-2000 8-NOV-2000 8-NOV-2000 8-NOV-2000 7-NOV-2000 7-NOV-2000	7-NOV-2000 7-NOV-2000 7-NOV-2000 7-NOV-2000 7-NOV-2000 7-NOV-2000 7-NOV-2000 7-NOV-2000 7-NOV-2000 7-NOV-2000 7-NOV-2000 7-NOV-2000
, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ઌ૽ઌ૽૾૱ઌ૽ઌૼઌૺૺૺૺૺૺૺૺૺૺૺૺ૽ઌૻઌ૽ઌ૽ઌઌઌઌઌઌઌ ઌૡૢૢૢૢૢૢૢૢઌૡૡઌઌઌઌઌૡૡઌઌઌઌઌૡ ૡૡૢૢૢૢૢૢઌૡૡૡૡૡૡૡૡ	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	د د د د د د د د د د د . د د د د د د د د

		also	r	a Bo	਼ ਜ਼ਰੇ ਜ਼	5	1072 [°] 28818	1125 28760	1178 28700
		enting and/ or prognosing ng including lung cancers and s.	1.	Sequences AAS29931-AAS30164 represent genomic DNA molecules, which encode the lung antigen polypeptides of the invention. Lung antigen polypeptides treatment and prevention of various types of disorders in e.g. humans, mice, rabbits, goats, horses, cats, dogs, chickens or sheep. A mice, rabbits, goats, horses, cats, dogs, chickens or sheep. A mice, rabbits disorders include autoinmune disorders in e.g. humans, hyperproliferative disorders such as rheumetoid arthritis, hyperproliferative disorders such as neumatoid arthritis, disorders such as cerdiac arrest, creebrovascular disorders such as cardiac arrest, creebrovascular disorders such as cerdiac arrest, viruses and fungi, ocular disorders such as corneal infection, endocrers such as premature absorders such as corneal infections caused by bacteria, viruses and fungi, premature labour and infectility, gastrointestinal disorders such as crown reading as corneal infections endocrers such as from the such as corneal infections endored are been and fungi, premature labour and infectility, gastrointestinal disorders such as crown's disease, renal disorders such as glomerulonephricie and	ma and pleurisy. The polypeptides can to prevent skin aging due to sunburn intation, to regenerate tissues and in 1so be used as a food additive or se storage capabilities. Note: The not form part of the printed electronic format directly from WIPO sequences	; DB 5; Length 32038; : 1.3e-08; :ches 60; Indels 16; Gaps	aaaaaaaaateertattittagragacatgtatttaccaaaaafatgtacfcaaftatt 1 	TATTAA	caacataatattgattttgcctcttggcrctgaagcccaaatatttaccgt 1
200005-02492657 200005-02492657 200005-02492697 200005-02493007 200005-02501607 200005-02501607 200005-02519807 200005-02519807 200005-02519807 200005-02518667 200005-02518667 200005-02518697 200005-02518697 200005-02519897 200005-02519897 200005-02519897 200005-02519897 200005-02519897 200005-02519897 200005-02519897 200005-02519897 200005-02519897 200005-02519897 200005-02519897 200005-02519897 200005-02519897 200005-02519897 200005-02519897 200005-02519897 200005-02519897 200005-02519897 200005-02519897	AN GENOME SCI INC. Barash SC, Ruben SM;	e for treating rs related to ection e.g. di	SEQ ID NO 292; 507pp; English	0164 ptides orses for of orses be rdent be rdent for tite fertification fertification	respiratory disorders such as asthma and pleur also be used to aid wound healing, to prevent to maintain organs before transplantation, to chemotaxis. The polypeptides can also be used preservative to increase or decrease storage c sequence data for this patent did not form par specification, but was obtained in electronic at ftp.wipo.int/pub/published_pct_sequences	2.7%; Score 75; DB larity 65.9%; Pred. No. 1.3 Conservative 0; Mismatches	AAAAATTCTTATTTTAGTAGACA 	GTATTTTGGATTTTATCATTTAAAAATTGTGGGAAATTTGTTTG	caacataatattgattttgcct ctacataacaatctcagttttacct
17-NOV-2000 17-NOV-2000 17-NOV-2000 17-NOV-2000 17-NOV-2000 01-DEC-2000 01-DEC-2000 05-DEC-2000 05-DEC-2000 06-DEC-2000 06-DEC-2000 08-DEC-2000 08-DEC-2000 08-DEC-2000 08-DEC-2000 08-DEC-2000 08-DEC-2000 08-DEC-2000 08-DEC-2000	(HUMA-) HUMAN Rosen CA, Ba:	WPI; 2001-457723/49 Isolated polypeptid respiratory disorde for testing and det	Claim 1; SEQ	Sequences AAS29931-AAS3 the lung antigen polype and their associated po treatment and prevention mice, rabbits, goats, h pathological condition absence of a mutation hyperproliferative diso hyperproliferative diso hyperproliferative diso hyperproliferative diso cardiovascular disorders disorders such a ocular disorders such a prematue labour and i Crohn's Aisease, in	respiratory dis also be used to to main orco chemotaxis. The preservative to sequence data i specification, at ftp.wipo.int	Query Match Best Local Simil Matches 147; C	1013 AAA/ 28877 AAA	1073 GTA 28817 G1	1126 28759 GTA
* * * * * * * * * * * * * * * * * * * *	(SAPA	SAFFF?	۲ S	4000000000000000000000	<u>8888888888888888888888888888888888888</u>	Õmž	δ d	& g	ර ස්

c,

cm gene therapy; lung antigen; neoplasia; acute myelogenous leukaemia; m adenocarcinoma; respiratory disorder; chronic rhinitis; sinusitis; immunodeficiency; X-linked agammglobulinaemia; m x-linked infantile agammglobulinaemia; m x-linked infantile agammglobulinaemia; m von willebrand's disease; bleeding disorder; thrombocytopenia; w willebrand's disease; acquired platelet dysfunction; kidney failure; multiphe myeloma; macrophage related disorder; daucher's disease; w willibbrand's disease; acquired platelet dysfunction; kidney failure; multiphe myeloma; macrophage related disorder; daucher's disease; w multiphe myeloma; macrophage related disorder; falorer disease; w renal disorder; heeker's muscular dystrophy; bowleg; musclar dystrophy; nervous disorder; ischaemic lesion; conticosterion; endorrine disorder; Cushing's syndrome; conticosteroid deficiency; gastrointestinal disorder; dysphagia; gastric reflux; human; ds. 28699 CTGGCCCTTTATAGAAAAAGTTTCCTGACCTCTGCCCTAGAGC 28657 Human novel lung related polypeptide DNA SEQ ID NO 292. RESULT 14 ADB33365/c ID ADB33365 standard; DNA; 32038 BP. 31-JAN-2000; 2000US-0179065P 24-FEB-2000; 2000US-0180628P 24-FEB-2000; 2000US-0180628P 02-MAR-2000; 2000US-0180874P 17-MAR-2000; 2000US-0199076P 19-MAY-2000; 2000US-0190076P 19-MAY-2000; 2000US-0190076P 20-JUN-2000; 2000US-02148667 11-JUL-2000; 2000US-02166477 07-JUL-2000; 2000US-02166477 11-JUL-2000; 2000US-02166477 11-JUL-2000; 2000US-02166477 11-JUL-2000; 2000US-02174966 11-JUL-2000; 2000US-02174967 11-JUL-2000; 2000US-0218647 11 2000US-0225447P 000US-0225757P. 000US-0225758P. 00US-0225759P 000US-0226681P 22-FEB-2002; 2002US-00079854 000US-0226279P 00US-0226868P 2000US-0227182P 2000US-0227009P (first entry) US2003054368-A1. 14-AUG-2000; 2 14-AUG-2000; 2 14-AUG-2000; 2 22-AUG-2000; 23-AUG-2000; Homo sapiens. 14-AUG-2000; 14-AUG-2000; 14-AUG-2000; 18-AUG-2000; 22-AUG-2000; 22-AUG-2000; 04-DEC-2003 20-MAR-2003 ADB33365; g

0US - 0228924P 0US - 02293343P 0US - 02293343P 0US - 0229344P 0US - 0229543P 0US - 0229543P 0US - 0229543P 0US - 0229543P 0US - 02312442P 0US - 0231443P 0US - 0231434P 0US - 0231444P 0US - 0231444P 0US - 0231444P 0US - 0231444P 0US - 0231546P 0US - 0231546P 0US - 0235464P 0US - 0236546P 0US - 02366957P 0US - 0236546P 0US - 0236566P 0US - 023666P 0US - 023666P 0US - 0236566P 0US - 0236566P 0US - 023656	UGS - 0241735 P UGS - 0241735 P UGS - 0241736 P UGS - 02411786 P UGS - 02418038 P UGS - 02418038 P UGS - 024181803 P UGS - 0246475 P UGS - 0246477 P UGS - 02466733 P UGS - 022466533 P UGS - 022466523 P UGS - 022466532 P UGS - 022465532 P UGS - 02245532 P
	00000000000000000000000000000000000000
	- CCT - 20 - CCT

2004
08:51:53
2
Dec
ոզյ

us-09-989-920-100.rng

Page 16

QY 1126 CAACHTATATATGATTTTGCCTCTGAGGCCTGAAAGGCCTAAATATTTACGGT 11 Dh 28759 GTATCTAACAATAACAATCGGTTTTAGCCCTTTAGCCCAAAGGCCTAAAATATTTACTAT 28700	1110 0 0011110001000000000000000000000	Db 28699 CTGGCCCTTTATAGAAAAAGTTTCCTGACCTCTGCCCTAGAGC 28657		RESULT 15 ADJ12644	ID ADJ12644 standard; DNA; 32844 BP.	AX AC ADJ12644;	XX DT 20-MAY-2004 (first entry)		DE DNA fragment of a BAC clone that encodes a numan secreted protein sey. XX	XW human; secreted; cancer; haematopoietic disease; anaemia;	XW multiple ageneration reproductive group disease; systemic lupus erythematosus XW inguinal hernia; musculoskeletal disease; systemic lupus erythematosus	KW gout; cardiovascular disease; arrnythmia; hypernatraemia; retai diseas KW fetal alcohol syndrome; Down's syndrome; excretory disease;	KW urinary incontinence, renal disorder; neural; sensory disease; xw alzheimer's disease; meninoitis; respiratory disease; emphysema;	XW occupational lung disease; endocrine disease; diabetes; w occupational lung disease; endocrine disease; portal humertension;	KW irritable bowel syndrome; epithelial disease; scleroderma;	<pre>KW epidermolysis bullosa; cytostatic; antianemic; antiarthitc; KW antiasthmatic; anti-HV; immunosuptresive; antiinflammatory; </pre>	<pre>KW antipsoriatic; antibacteriat; osteopaulic; defmactoryteat; antiscue; KW immunomodulator; antiarrhythmic; cardiant; notropic; antilipemic; KW immunomodulator; antiarrhythmic; cardiant; notropic; antilipemic;</pre>	KW nephrotropic; uropathic; neuroprotective; antipatkinisonian; uranyuitte KW antidiabetic; anabolic; hypertensive; vulnerary; ds.	XX OS Homo sapiens.	AA US2004010132-A1.	AA PD 15-JAN-2004.	AA PF 30-OCT-2001; 2001US-00984429.	09-0CT-1997;	09-0CT-1997	09-0CT-1997	PR 09-0CT-1997; 97US-0071498P. PR 08-0CT-1998; 98W0-15021142.	01-NOV-2000	(ROSE/)	(DUAN/) (PURN/)	(FLOR/	(/NUOY)	(YUGG/) (YUGG/)	(OLSE/) EBNER R. (OLSE/) OLSEN H.	XX PI Rosen CA, Brewer LA, Duan RD, Ruben SM, Florence KA, Greene JM; of Vound DF Ferrie AM YurG, Florence C, Ebner R, Olsen H;	WPT: 2004-090518/09.
17-NOV-2000; 2000US-0249211P. 17-NOV-2000; 2000US-0249212P. 17-NOV-20000: 20249212P.	17-NOV-2000; 2000US-024921.4P. 17-NOV-2000; 2000US-0249214P.	17-NOV-200U; 200US-0249215F. 17-NOV-2000; 2000US-0249217F. 17-NOV-2000; 2000US-0249217P.	17-NOV-2000; 2000US-0249218P. 17-NOV-2000: 2000US-0249244P	17-NOV-2000; 200005-0242411. 17-NOV-2000; 2000US-024245P.	I7-NOV-2000; 200005-0249265F.	17-NOV-2000; 2000US-0249297P. 17-NOV-2000; 2000US-0249299P.	17-NOV-2000; 2000US-0249300P. 01-DEM-2000; 2000US-0250150P.	01-DEC-2000; 2000US-0250391P.	05-DEC-2000; 2000US-0251030P. 05-DEC-2000; 2000US-0251988P	05-DEC-2000; 2000US-026719P.	06-DEC-2000; 2000US-U251479P. 08-DEC-2000; 2000US-0251856P.	08-DEC-2000; 2000US-0251868P. 08-DEC-2000; 2000US-0251869P.	08-DEC-2000; 2000US-0251989P.	1-DEC-2000;	05-JAN-2001; 2001US-0259678P. 17-JAN-2001; 2001US-00764878.	(HUMA-) HUMAN GENOME SCI INC.	Rosen CA, Ruben SM, Barash SC;	WPI; 2003-695900/66.		diagnosing acute myelogenous leukemias, adenocarcinoma, turombocycopenia, Von Willebrand's disease.	Disclosure; SEQ ID NO 292; 178pp; English.	The invention relates to an isolated lung antigen polypeptide sequence or	encoded sequence in a CDNA clone. The polypeptide and its polynucleotide are useful for treating, preventing, diagnosing and/or prognosing	diseases and/or disorders such as parhological cell proliferative neoplasias e.g. acute myelogenous leukaemias, adencarcinoma; respiratory	disorders such as chronic rhinitis, sinusitis; immunodeficiencies such as X-linked aqammaqlobulinaemia, X-linked infantile agammaglobulinaemia;	inflammatory disorders such as adrenalitis, alveolitis; immune complex diseases such as serum sickness, polyarteritis nodosa; bleeding disorders	such as thrombocytopenia, Von Willebrand's disease; acquired platelet dysfunction such as kidney failure, multiple myeloma; disorders	associated with macrophage numbers and/or macrophage function such as Gaucher's disease, Neimann-Pick disease; tumours such as colon cancer,	pancreatic cancer; renal disorders such as kinney fallure, nephritis; bone disorders such as Albers-Schonberg disease, bowlegs muscile disorders products and disorders, bowlegs musciles	disorders such as becker's muscular dystrophy, buchenne s muscular dystrophy, nervous disorders such as ischaemic lesions disorders and a solvention of the second of the second second second second second second second second second) endocrime disorders such as cusming's syndrome, culticosteroid	Jery Match 2.7%; Score 75; DB 10; Length 32038; Sagt Local Similarity 65.9%; Pred. No. 1.3e-08; 1.3e-08; 1.4; Gang 2; Protec 147: Concervative O: Micartohec 60; Indels 16; Gang 2;	ATTCTTATTTTTAGTAGAGATGTATTTACCAAAAATATGTACTGATTATT 10	28877 AAATATTTTAATTAATTAATTAATTAAACCCCGTATTACAAAAAAATTCFTCTAAATTATT 28818	1073 GTATTTTGGATTTTATCAATTTATAAAAATTGTGGGAAATTTGGTCTTACGC 1125

QUE δ q

1

q ð

treating, preventing or ameliorating diseases or disorders e.g. cancer, anemia, arthritis, asthma, inflammatory bowel disease or Alzheimer's disease.

Disclosure; SEQ ID NO 498; 286pp; English

This invention relates to novel polynucleotides encoding human secreted proteins. Specifically, it refers to the vectors, host cells, recombinant and synthetic methods for producing human polynucleotides, polypeptides and synthetic methods for producing human polynucleotides, polypeptides and antibodies. Furthermore, it relates to screening methods to identify agonists and antagonists that can be used to inhibit or enhance the production and function of the secreted proteins. The present invention describes these compositions as useful for disgnosing, treating or preventing disorders such as cancer, haematopoletic diseases including preventing disorders such as cancer, haematopoletic diseases including prostatitis and hypernatraemia, mixed fetal diseases including prostatitis and hypernatraemia, mixed fetal diseases including systemic lupus erythematosus and gout, cardiovascular diseases including teal producing emphysema and occupational lung diseases including teal hypernatraemia, mixed fetal diseases including continary incontinence and renal disorders, neural or sensory disease including diabetes and glomerulonephritis, respiratory diseases including diabetes and glomerulonephritis, digestive diseases including portal hypernation and irritable bowe and condering diseases including diabetes and glomerulonephritis, digestive diseases including cort, there are various activites such as cytostatic, antianthrit, antibatory, antipout, immunosuppressive, antistritic, antisthmatic, antibator, antiarthythmic, cardiant, entitratritic, antistontatic, antibator, antiarthythmic, cardiant, move secreted protein of the invention. Weretensive antiparkinsonian, tranquilizer, antibator, antiarthythmic, cardiant, antiparkinsonian, tranquilizer, antibator, antiarthythmic, cardiant, antiparkinsonian, tranquilizer, antibator, antiarthythmic, cardiant, move secreted protein of the invention. Weretensive desense including secreted protein of a bollowing we site www.secdata.uspto.gov/sequence.html, pocument 10; soluonin132. Sequence 32844 BP; 11125 A; 6089 C; 5587 G; 10043 T; 0 U; 0 Other;

2 1126 -----CAACATAATATTTGATTTTGCCTCTTGGCTCTGAAAGCCCCAAAATATTTACCGT 1178 4086 GTATCTACATAACAATCTCAGTTTTACCTCTTAGCCCACAAAGCCTAAAATATTTACTAT 4145 1013 AAAAAAAAATTCTTATTTTTAGTAGACATGTATTTACCAAAAATATGTACTCAATTATT 1072 1073 GTATTTTGGATTTTATCAATTTAAAAATTGTGGAAAATTTGCTCTTACGC------ 1125 60; Indels 16; Gaps 2.7%; Score 75; DB 12; Length 32844; 55.9%; Pred. No. 1.3e-08; ive 0; Mismatches 60; Indels 16; 1179 CTAGCCCGTTACAGAAAAGTCTGCTGACTACTGAGCCAGACC 1221 65.9%; Local Similarity 65.9 nes 147; Conservative Query Match Best Loca Matches q δ q qq \mathcal{S} 8 8

Search completed: November 29, 2004, 14:40:49 Job time : 1294 secs

4146 CTGGCCCTTTATAGAAAAGTTTCCTGACCTCTGCCCTAGAGC 4188

å

.

2004
08:51:53
N
Dec
Thu
*

۶,

5.1.6 Compugen Ltd.	earch time 1158	nout alignments) L.764 Million cel	.aaaaataaaaagatgcggcc 2754		ues	rs: 9053458				cted by chance to have a of the result being printed, score distribution.	Description	AX335073 Sequence AC079998 Homo sapi AC079988 Homo sapi AC079988 Homo sapi AX5355064 Sequence AR204690 Sequence AC139559 Homo sapi AX255505 Sequence CO222682 Sequence AC136817 Rattus no AC136136817 Rattus no AC136136817 Rattus no AC136817 Rattus no AC16817 R
GenCore version 5.1. Copyright (c) 1993 - 2004 Comp	eic – nucleic search, using sw model November 29, 2004, 08:42:07 ; S	(wit 1124	US-09-989-920-100 : score: 2754 : 1 gccagaagcagcctcagctt	g table: IDENTITY NUC Gapop 10.0, Gapext 1.0	ed: 4526729 segs, 23644849745 residues	number of hits satisfying chosen parameters	a DB seq length: 0 a DB seq length: 200000000	processing: Minimum Match 0% Maximum Match 100% Listing first 45 summaries	0 	Pred. No. is the number of results predicted score greater than or equal to the score of t and is derived by analysis of the total score	& Quer Matcl	27754 100.0 2754 6 AX555073 2718 98.7 211305 9 AC079988 2397.4 98.7 225203 5 AC140107 2397.4 98.7 225203 5 AC140107 2397.4 98.7 225203 5 AC140107 2397.4 98.7 225203 5 AC130359 820.6 5 AR204690 80365 AC1303359 820.6 5 AR204690 63.5 AC1303359 612.4 88036 2 AC1303359 612.4 612.4 9 20.1 611 G38425 355.4 9.06 6 AX535076 6 357.4 9.1 0.1 G38425 6 357.4 9.1 0.1 G38425 6 6 AX535076 87.6 9.1 0.1 G38425 6 AX535076 6 6 6 6 7 6 2 6 6 7 2 2 2 2 2 2
	OM nucl Run on:		Title: Perfect Sequenc	Scoring	Searched	Tctal	Minimum Maximum	Post-p	Databas			

AC130435 Homo sapi AC030435 Homo sapi BD2084198 Homo sapi BD20841940 Homo sapi AL0356979 Homo sapi AC022813 Homo sapi AC022135 Homo sapi AC022356 Homo sapi AC022356 Homo sapi AL022356 Homo sapi AL022356 Homo sapi AL024907 Equus cab AL031177 Human DNA AC124907 Equus cab AL031177 Human DNA AC016434 Homo sapi AC001661 Homo sapi AC01366 Homo sapi AC001661 Homo sapi AC01366 Homo sapi AC01361 Homo sapi	linear PAT 22-NOV-2002 Vertebrata; Buteleostomi; i; Hominidae; Homo. .Y. and Liu,C. ng specific genes and	<pre></pre>
 AC130435 AC130435 AC1304467 AC041040 AC041046 AC0410467 AC042113 AC022517 AC0125113 AC0125113 AC0125113 AC0125113 AC0125113 AC0125113 AC02256852 AC1268646 AC1264907 AC1264466 AC1264466 AC126466 AC025462 AC0216134 AC121232 AC022462 AC022462 AC022462 AC022462 AC022462 AC022462 AC022462 AC025462 AC0	ALIGNMENTS tent w002068633. 753 753 753 753 753 753 753 753 753 753	re 2754 1. No. 1. No. 1. Iso. 1. Iso. 1. IIIII 1. IIIIIII 1. IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
77 76.5 76.5 75.4 72.6 72.6 72.6 72.6 72.6 72.6 72.6 72.6 72.7 72.6 72	AX535073 AX535073 100 AX535073 1 G AX535073 1 G AX535073 1 G AX552073 1 G AX552073 1 G Homo sapiens Eukaryota; Na Macina, R.A., Compositions Patent: WO 02 Diadexus, Inc Diadexus, Inc Diadexus, Inc	<pre>/ Match Local Similarity 100.0%; Preclass 2754; Conservative 0; M l gccAgaAgcAaccreaccreaccreacca l gccAgaAgcAaccreaccreaccaracca 61 gGaAAACAGGCCCCCGGGTAGCT 61 gGaAAACAGGCCCCCGGTAGCT 61 gGAAAACAGGCTCCCTCGGTAGCT 1 gaGTGGATGACGCTCCCTCGGTAGCT 121 gaGTGGATGACGCTGGTGGCCTA 121 gaGTGGATGACGCTGGTGGCCTA 121 gaGTGGATGACGCTGGTGGCCTTA 121 gaGTGGATGACGCTGGTGGCCTTA 121 gaGTGGATGACGCTGGTGGCCTTA 121 gaGTGGATGACGCTGGTGGCCTTA 121 gaGTGGATGACGCTGGTGGCCTTA 121 gaGTGGATGACGCTGGTGGCCTTA 121 gaGTGGATGACGCTGGTGGCCTTA 121 GCTCGAGGCTGGTGGCCTTA 111 [] [] [] [] [] [] [] [] [] [] [] [] []</pre>
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	RESULT 1 AX535073 DEFINITION DEFINITION VERTON VERTON VERTON KEYWORDS SOURCE ORGANISM TITLE AUTHORS TITLE FEATURES FEATURES SOURCE ORIGIN	Query N Best Lo Matchee O D D D D O O O O O O O O O O O O O O O

"" Thu Dec 2 08:51:53 2004

us-09-989-920-100.rge

Page 2

. Marking

The second second

11 CCCORRECTORACTORACTORACTORACTORACTORACTORACTORA	1321 GRANGCATTCAGATGAGGGGTTTCGGATTAACCCTGCCTATCACGGATGTGGTGTGGT 1360 1381 TGTGGCTGGGGGATGAGGGGTTTCGGATTAACCCTGCCTATCACGGATGTGGTGTGGT 1360 1381 TGTGGCTGGGGAGGCGCTTTCGATTAACCCTGCCTACGAGAGCATGTGGTGCGT 1360 1381 TGTGGTGGGGAGGCCCCTTGGAAGGCGTTTCGTGTGTGTG	
 CCCCAAAAGCAGGGTTGGATTGCTTCTURAGCCGGGTTCGAACATGGAGTTGCAAAGGAGGTTGCAAAGGAGGTTGGAATGCTTCGAGTGGGATTGCTTCGGATGCAAGGAGTTGCAAGGAGTTGCAAGGAGTTGCAAGGAGTTGCAAGGAGTTGCAAGGAGTTGCAAGGAGTTGCAAGGAGTTGCAAGGAGTTGCAAGGAGTTCCAAGGAGGAAGGA	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	CCCCACAGGCAGGGCTCTCTAGGCGGGGTTCTCACGGTCCCCACAGGGTAGGCTTCACAGGGCACCCCCCCC	961 TGATAGGGAATATTATCTTTGAACCCAATGAAGTGTTTTCTCCCCCATCAAAAAAAA

ŘФ.

Lind to the

ť

NOTICE: This sequence may not represent the entire insert of this clone. It may be shorter because we only sequence overlapping clone sections once, or longer because we provide a small overlap between neighboring data submissions. This sequence was finished as follows unless otherwise noted: all regions were double stranded, sequenced with an alternate chamistry, or coverd by high quality data (i.e., phred quality >= 30); an attempt was made to resolve all sequencing problems, such as compressions and repeats; all regions were covered by sequence from more than one subclone; and the assembly was confirmed by restriction digest.	MAPPING INFORMATION: Mapping information for this clone was provided by Dr. John D. McPherson, Department of Genetics, Washington University, St. Louis MO. For additional information about the map position of this sequence, see http://genome.wustl.edu/gsc	SOURCE INFORMATION: The RPCI-11 human BAC library was made from the blood of one male donor, as described by Osegawa,K., Woon,P.Y., Zhao,B., Frengen,E., Tateno,M., Catanese,J.J. and de Jong,P.J. (1998) An improved approach for construction of bacterial artificial chromosome libraries. Genomics 51:1-8. The clone may be obtained either from Research Genetics, Inc. (http://www.resgen.com) or Pieter de Jong and cowrkers at http://www.chori.org	NEIGHBORING SEQUENCE INFORMATION: The clone sequenced to the left is RP11-60M20, 2000 bp overlap. Actual start of this clone is at base position 1 of RP11-795C1; actual end is at base position 111002 of RP11-6906.	Single plasmid region exists between 76851 and 76869. Polymorphisms exists between AC067960, AC013399 and AC079988. Data from AC067960 and AC013399 was used to finish AC079988. Data from AC067960 FEATURES Location/Qualifiers source 1. 211308 /organism="Homo sapiens" /mol_type="genomic DNA"	<pre>/ullianset = caronisode /map="2" /clone="kP11-795C1" /clone="kPC1-11" repeat_region 1115 repeat_region 1042.1153 /rpt_family="MER1_type" repeat_region 1682.1153</pre>		repeat_region 2371raminy= Aid repeat_region 2371s183 repeat_region 2491s183 repeat_region 3648s1369 repeat_region 7505_family="MIR"	repeat_region 3726333 repeat_region 4744149"MIR" repeat_region 43754466 repeat_region 42754466 repeat_region 46274725 repeat_region 48254920
2401 GCACGGTTACTGTGTTCTCTAATGTTCATGTATTTAAAATGATTTCTTTC	QY 2581 TGAGCTCAAAGTTGTCCTACTGCCCATGTTTTTGTAAAGCATTTTTGCCT 2640 Db 2581 TGAGCTCAAAGTTGTCCTACTGCCATGTTTTTGTACCTGAAATAAAGCATATTTTGCACT 2640 Db 2581 TGAGCTCAAAGTTGTCCTACTGCCATGTTTTTGTACCTGAAATAAAGCATATTTTGGCACT 2640 QY 2641 TGTTACTGTACCATAGTGCGAGGAAGGACGTGTATGTGGGGGAAACTTTTGGGACT 2640 Db 2641 TGTTACTGTACCATAGTGCGGAACGAAAGTCTGTATGGGGGAATCGGGTTGGAGTTAGAA 2700 Db 2641 TGTTACTGTACCATAGCGGAACGAAAGTCTGTATGTGGGGAAATCTTGGGGTTAGAA 2700	2701 TGCAAATAAAACTCACATTTGTAAGAAAAAAAAAAAAAA	ACOT9988 6 GI:18873965 ACOT9988.6 GI:18873965 HTG. HOMO sepiens (human)	CKGANLSM HOMO SAPTENS UKGANLSM HOMO SAPTENS Eukaryota; Matazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mamalia; Eutheria; Primates; Catarrhini; Hominidae; Homo. REFERENCE 1 (bases 1 to 211305) AUTHORS Sulston.J.E. and Materston, R. AUTHORS Sulston.J.E. and Materston, R. TITLE Toward a complete human genome sequence JOURNAL Genome Res. 8 (11), 1097-1108 (1998) MEDLINE 99063722 MEDLINE 99063722	REFERENCE 2 (bases 1 to 211305) AUTHORS Waligorski,J., Haakenson,W. and Boyer,E. AUTHORS Waligorski,J., Haakenson,W. and Boyer,E. TITLE The sequence of Homo sapiens BAC clone RP11-795C1 Unpublished (2001) REFERENCE 3 (bases 1 to 211305) AUTHORS Waterston,R.H. TITLE Direct Submission JOURNAL Submission JURNAL Submitted (2001) Genome Sequencing Center, Washington University School of Medicine, 4444 Forest Park Parkway, St. Louis,	MO 63108, USA REFERENCE 4 (bases 1 to 211305) AUTHORS Waterston,R.H. TITLE Direct Submission JOURNAL Submitted (23-FEB-2002) Genome Sequencing Center, Washington UNIVENTL Submitted (23-FEB-2002) Genome Sequencing Center, Washington OURNAL Submitted (23-FEB-2002) Genome Sequencing Center, Washington	REFERENCE 5 (bases to 211305) AUTHORS Waterston,R. TITLE Direct Submission JOURNAL Submitted (09-MAR-2002) Department of Genetics, Washington University, 4444 Forest Park Avenue, St. Louis, Missouri 63108, USA COMMENT On Feb 23, 2002 this sequence version replaced gi:18042517.	

us-09-989-920-100.rge

Thu Dec 2 08:51:53 2004

<pre>family= family= f</pre>	<pre>rpt camily= f089721 723.camily= rpt camily= rpt family= rpt family= r</pre>	4802. rpf fam. rpf fam. rpf fam. rpf fam. rpf fam. rpf fam. 6821. 6681. rpf fam. rpf fam.
repeat_region repeat_region repeat_region repeat_region repeat_region repeat_region repeat_region repeat_region repeat_region repeat_region repeat_region repeat_region repeat_region		repeat_region repeat_region repeat_region repeat_region repeat_region repeat_region repeat_region

repeat_r repeat_r repeat_r repeat_r	egion 18213. 18522 egion 18533. 19061 kpt_family="Alu" egion 1965. 19199 egion 1915. 19199 egion 1919. 19512 egion 21919. 19512		
Query Match Best Local Si Matches 2722;	milar Con	2	
Ч	GCCAGAAGCAGCCTCAGCTTGGCAAGGTGGGAGATGACTGCTGTTGCGCTTCGGATTTGG 60		
9610	eccadaadcorcorcadecradeordedeadaaroadcordorrecorrec	37	i
61 0136	GGAAAAGGGCTCCCTCGGTAGCTCGATGATCCTCTTTGATCTTGTGTGACCTCCTGGA 120 	177	
121	GAGTGGATGACGCTGGCCCTTAGCTTTTCTAGACAGGGGTAAATTGCACTGGGGGGATGT 18 [0	
181	CCCCCCAGAGCAGCGACAAGCTCTCTAGAGCGGGGGGGGG		
	CCCCAGAGGCAGGCAAGGTCTCTAGAGCGGGTCTCCCCACAGGCTTCACACAGGCA 899	57	
241 9956	CTTCGGCTGGGTTGCATGCTCTGTGTCATATCCGGTCCAGGGTTGCAGGTAGAAAT 300	6	
301	GTTTGTACCCTCTTTGTGATTGCCACCTCCTTCCCATCGCCCCCTTAGGGACAGGGCTTGAG 3		
9896	GITTGTACCTCTTCTGATTGCCACCTCCTCCCATCGCCCCTTAGGGACAGGGCTTGAG 898	37	r H.
36	deccaergagecerracercagecerceragecercerrageaacergeceragegecercer 420 deccaergagecerrageargeageageageageageageageageageageageageag	545 #	
0.00 1.01 1.01	0.4		
421 9776		17	
481	TCCTCCCCCCAACTATGGGTCACGGCTAACAGATCTGGGGGGAACTGCTGTGGTAG 540		
9716	68	57	sta
541	TGGCCAGGGCTGCACCTGCCAGCTCTGCCACTTTAGGGCCTTTCTAGGGCAGTG 600	4.	
601	99 9		de la
9596	rctraggaacragcrcrgacscarggcrrrrcrgcrccrgrgcggggggg 895	37	
9	TAAGGTGGGGAAGGGCCAGGCTGGGCCCAGCCGGGCGGGC		1.000
1000	78		
- 1	CAAACCATGTCCCCCAAGGGCCAAGGGCCAGGGGGGGGGG	17	1.1.1
781	GAGGGCCTGAGGGCGGGGGCCGGGGGAGTTTTTCGGGCCTTCATGGGGA 840		r: T
9416	GIGHTELLELELELELELELELELELELELELELELELELELE	157	16. 1
841	Ö		inter a
9356		163	

Page 4

c Thu Dec 2 08:51:53 2004

,

08:51:53 2004 2 Thu Dec

us-09-989-920-100.rge

/note="assembly_fragment" 163826. .225203 /note="assembly_fragment

misc feature

vector_side:right'

clone_end:T7

ö 60 0; Gaps DB 2; Length 225203; 6; Indels

131896 CCCCAGAGGCAAGGTCTCTAGAGGGGGTCTCCCACATGACTGGCTTCACACAGGCA 131837 131476 TĊĊTTĂĠĠĂĂĠŦĂĠĊĬĊŸĠĂĠĠĊĂŦĠĠĠŦŦŦŦĊŦĠĊĊĊĊŦĠŦĠĊĂĠĠĠĊĂĠĠĠĊĂŦĠĠĠĂ 131417 131836 CTTCCGCTCGGGTTGCATGCTCTGCGTTCCCGGTCCGGGGTGCGGGGAAAT 131777 131536 TGGCCAGGCTGCACCTGCCATCCCGGCTCTGCGGCCTTCTAGAGGCAGTG 131477 132016 GGAAAACAGGCTCCCTTGGGTAGCTCGATGATCTTTTGATCTTGTGTGACCTCCTGGA 131957 131956 GAGTGGATGAAGCTGGGCGTTAGCTTTTCTAGACAGTGATAGTGGCACTGGGCGAGGC 131897 131776 GTTTGTACCTCTTCTGGTTGCCCCCCTCCCCATCGCCCCCCTTAGGGGCCGGGCTTGAG 131717 131656 GAGGCTCCTGAAAACCCCCACTTAGCTTCCGCAAAAGGCTCCTGGCTT 131597 131716 GGCCAGTGAGGTGCTGGTCAGGCCCCAGGCCTCCTTGGGACCTGCCAGGGGCACCCT 131657 131596 recreecedarcharecercaecercaeceraecaechareceecaaecreecrae 131537 131356 CCAAACCATGTCCCCCAGCGAGGGGCCAGAGTGGGGAACCTGTCCTCATGCCCTTCGTCCT 131297 131236 ACAACATCCTCCGCACCCCTCATCCTCTATCAGCACTTACCGGTGTGTGACTGCC 131177 TCCTCCCCCCAATCTATGGGTCACAGCTAACAGATCTGAGGGCAACTGCTGTGGTAG 540 ⁶ 300 240 720 61 GGAAAACAGGCTCCCTCGGTAGCTCGATGATCCTCTTTGATCTTGTGTGACCTCCTGGA 120 GTTTGTACCCTCTTCTGATTGCCACCTCCTTCCCATCGCCCCTTAGGGACAGGGCTTGAG 360 TCCTTAGGAAGTAGCTCTGAGGCATGGGTTTTCTGCTCCTGTGCAGGGCAGGCTGATGGGA 660 721 CCAAACCATGTCCCCCAGCGAAGGGCCAGAGGGGGAACCTGTCCTCATGCCCTTCGTCCT 780 GAGGAGCCCTGAGGTGGCAGGGGCCAGGGGGAAGTTTTCAGGCCTTCATCAAGAGA 840. 900 121 GAGTGGATGACGCTGGTGGCCTTAGCTTTTCTAGACAGTGTAAATTGCACTGGGCGATGT 180 361 GGCCAGTGAGGCGCTGGTCAGGCACCCCAGGCCTCCTTGGGACCTGCCCAGGGGCACCCT 420 GAGAGCTCCTGAAACCCCCACTTAGCTTCCGGACCTTTCTGCGAAAGCTCCTCGTGGCTT 480 541 TGGCCAGGGCTGCACCTGCCATCCCCGGCTCTGCCCCCTTTTAGGGCCTTCTAGAGGCCAGTG 600 960 241 CTTCCGCTCGGGTTGCATGCTCTGTGTCATCTTACCGGGTCCAGGGTTGCAGGTAGGAAAT CCCCAGAGCCAAGGTCTCTAGAGCGGGTCTCCCACATGACTGGCTTCACAGGGCA CTTGTCAGCTAGCATACGGTGGGGCCCACCTGGCCCGCTGTTTATGCCACTGATTTA TAAGGTGGGGAAGGACGGTCAGTGCTTGGGCCCCAGCTGGCCAGCCTGGCGAAAA 1 GCCAGAAGCAGCCTCAGCTTGGCAAGGTGTGGAGATGACT Score 2718.4; Pred. No. 0; 0; Mismatches Query Match 98.7%; Best Local Similarity 99.8%; Matches 2722; Conservative 1 181 781 301 421 481 601 661 106 ORIGIN δ ЪЪ q 20 \mathcal{S} a δ g q පි δ дŋ q q q δ \mathcal{S} 8 δ q δ 8 8 a q 8 8 g 8 ЧC 8

Diaz,J.S., Dodge,S., Dooley,K., Dorris,L., Erickson,J., Faro,S., Ferreira,P., FitzGeraid,M., Gage,D., Galagan,J., Cardyna,S., Graham,L., Grand-Pierre,N., Hulme,M., Hagopian,D., Hagos,B., Hall,J., Horton,L., Hulme,M., Jliev,L., Johnson,R., Jones,C., Kamat,A., Karatas,A., Kells,C., Landers,T., Levine,R., Lindblad-Toh,K., Liu,G., Lui,A., Mabbitt,R., MacLean,R., Macdonald,P., Major,J., Maningy.J., Matthews,C., McCarthy,M., Meldtim,J., Meneus,L., Mihova,T., Mlenga,V., Murphy,T., Naylor,J., Nguyen,C., Nicol,R., Norbu,C., OC Connor,T., O'Donnell,P., O'Nell,D., Oliver,J., Peterson,K., Phunkhang,P., Pierre,N., Rachupka,A., Ramasamy,U., Raymond,C., Retta,R., Rise,C., Rogov,P., Spencer,B., Stange-Thomann,N., Stojlanovic,N., Stubs,M., Vassiliev,H., Venkataman,V.S., Viel,R., Voham, H., Mu,X., Wiman,D., Young,G., Zainoun,J., Zembek,L., Zimmer,A. and Zody,M., Direct, Submission Submitted (21-FEB-2003) Whitehead Institute/MIT Center for Genome Submitted (21-FEB-2003) Whitehead Institute/MIT Center for Genome Research, 320 Charles Street, Cambridge, MA 02141, USA All repeats were identified using RepeatMasKer: Smit, A.F.A. & Green, P. (1996-1997) http://ftp.genome.washington.edu/RM/RepeatMasker.html ------ Genome Center Center: Whitehead Institute/ MIT Center for Genome Research arbitrary. Gaps between the contigs are represented as runs of N, but the exact sizes of the gaps are unknown. This record will be updated with the finished sequence as soon as it is available and the accession number will be preserved. NOTE: This is a 'working draft' sequence. It currently consists of 4 contigs. The true order of the pieces is not known and their order in this sequence record is Conserves quality: 224530 bases at least 020 Insert size: 221000; agarose-fp Insert size: 224903; sum-of-contigs Quality coverage: 14.9 in Q20 bases; sum-of-contigs Quality coverage: 14.6 in Q20 bases; sum-of-contigs 46920: contig of 46920 bp in length 47020: gap of 100 bp 51090: contig of 4070 bp in length 51190: gap of 100 bp 163725: contig of 112535 bp in length 163825: gap of 100 bp 163825: contig of 61378 bp in length. ដ្ /clone="RP11-1201C10" /clone_lib="RPCI-11 Male BAC segment 47021. 51090 /note="assembly_fragment" note="assembly_fragment" .225203
 /organism="Homo sapiens" /mol_type="genomic_DNA" /db_xref="taxon:9606" /chromosome="17" Location/Qualifiers clone_end:SP6______vector_side:left" 51191. .163725 Center code: WIBR .225203 'map="17" 47021 51091 51191 163726 163826 46921 misc_feature misc_feature misc_feature source JOURNAL FEATURES TITLE ""COMMENT

ø Page

^c Thu Dec 2 08:51:53 2004

5	
Page	

qq	131176 C	CTTGTCAGCTAGCATACGGTGGGCCCACTGGCCCACTGGCTGTTATGCCCACTGATTTA 131117
δ	961 T 1	GATAGGGAATATTATTTTGAACCCAATGAAGTGTTTTTTCCCCCCATCACAAAAAAAA
qq		GATAGGGAATATTATTTTTTTTGAACCCAATGAAGTGTTTTTTTT
QY	021	AATTCTTATTTTTAGTAGACATGTATTTACCAAAAATATGTACTCAATTATTGTATTTTG 1080
qu	056	сттатттттастасатстатттассаадататстастсааттатта 130
δγ	1081	40
đũ	966	иссаатттааааттетевааатттеттестствеессаасатаататтеат 1
δγ	1141	TTTGCCTCTTGGCTCTGAAAGCCCCAAATATTTACCGTCTAGCCGGTTACAGAAAAGTC 1200
qq	936	racacaaaaaaa 1
0y	ч	GCTGACTACTGAGGCCGGACCTCCATTACCTCCATCCCTGTTGGATTATTTAAAGAAAG
дQ	876	GETGACTACTURACCTCCATTACCTCCATCCTGTTGGATTATTTAAAGAAAG
oy	1261 C	20
дQ		систеритеритеритеритеритеритеритеритеритери
δ	1321	80
дq	756	IGAAGCATTCAGATGAGCGGTTTCTGCATTAACCCTGCCTATCACGCATCTCGTGTCCTG 130697
δλ	1381 T	sreecreagecccccrrgaagerrcrgergerrcagergerecagercca 1440
Ъb	696	steertooccocctreeaaootrcreerocrtcaectecreecaeaocra
oy	1441 C	CCCCCCCTCGTGGGGAATGCAGAGCCCTTTGCTTTCCTTCTTGCCGCCTGCTTCCTGT 1500
qq	36	ccccccrcrcrcrcrcrcrcrrrccrrrccrrrccrrrccrrccrcr
δλ	1501 1	CCTGGGGGACCCGCTGGGCCTTTGGTCTGCCTCGGCCAGGTCCCTCAGGGTTGATG 1560
qa	130576 1	130
QY	- H	CGTGGGAGAAGGACTTTTGAGCAGTGGGCAGCAGCAGCGGCTCCTGGGCCAGCTCACTCT 1620
qq	516	STGCAGAAGGACTTTGAGCAGTGGTGGCAGCAGCAGCTCCTGGCCAGCTCACTCT 130
QY	1621	HGTCCTGGGAGGGGGGGGCGGCCTGATCTCCCCCCTAGTACCTTGGGGAGCTGAGGACCTT 1680
qq	20	GICTIGGGAGGGGCAGCTGATCTCACCTCCACCTAGTACCTTGGGGACTGAGCTT 130
QY	н	TreeAgeCTGCAAgeCTTTTCCCATGTGTCCAGCTGCTGCTACAA 1
qa	396	THE ACTION AND A
δγ	1741	TCACAGAGGCCTCAGCTTGGTGGTTTTGAGGGGCGGCCCCCCGGGCCCTCC 1800
qu	130336 /	130
δγ	1801	ATAAGGGTATCCTGGGGCCTGAGAATTCTGCCATCTGCCATTGGAGGATGGACGCCCCAAA 1860
дq	276	стерестранаттстесатспессаттерабеатерастска. 13
δy		5
qq	216	CGAGGTCCGGCTGTGCCATCCAGCCCC
δγ	1921 (01
qq	56	criterccaeccréterececeréerercricaerecaééééééééééééééééééééééééééééééééé
δ :	1981	40
qq	130096 (OCTTTCTTCGTGAGTAACAGTAGTGATAGCAGCTGGGGGCTAACAGG

us-09-989-920-100.rge

08:51:53 2004

2

a vo a

ö

8 B 8

2280

475

2340

415

q

2220

535

<u>8</u>

2160

595

8 8 8

2100

715

655

6

P Q

775

8 8 8

음 장 음

955

86868686

1135

1195

1560

8 qq S d S

g \hat{o}

1439 1316

8

AGAGAACAACATCCTCAGCTCCGCACCCTCATCCTGTATCAGCACTACCGGTGTGTG 895
 1016
 AAAAAATTCTTATTTTAGTAGACATGTATTTACCAAAAAATATGTACTAATTATTGTA
 1075

 1101
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 2099 TGGGATAAGGTGGGGAAGGACGGTCAGTGCTTGGGCCCGGCTGGCCAGCCTGGCGATGG 2010 CTGCCCTTGTCAGCTAGCATACGGTGGGCCCACCTGGCCCACTGGCTGTTTATGCCACTG 1800 1620 1559 AGTCTGCTGACTACTCAGGCCAGACCTCCATTACCTCCTGTTGGATTATTTAAAG 1500 1256 AAAGCCTCAGACAGTAAGGGCTTTTTTAAAAGAATAAATGACTTGGGTTGGGAA 1315 1499 AAAGCCTCAGACAGTAAAGGGCTTTTTTTAAAAGAATAAAATGACTTGGTTTGCGCTTGGGAA 1440 ACCTGAGAGGCTCCTGAAACCCCCACTTAGCTTCCCAGACCTTTCTGCAAAAGCTCCTCCT GCTAGTGGCCAGGGCTGCCCTGCCCAGCCTCTGCCACTTTAGGGCCTTCTAGAG TTGAGGGCCAGTGGAGGCGCTGGGCACCCCCAGGCCTCCTTGGGACCTGCCCAGGGGC TTGAGGGCCAGTGGTGGTGGTCGGGCGCCCCCAGGCCTCCTTGGGAGCCCGGGGGC ACCTGAGAGCTCCTGAAACCCCCACTTAGCTTCCAGACCTTTTCGCAAAAGCTCCTCT TGGGATAAGGTGGGGAAGGACGGTCAGTGCTTGGGCCCAGCTGGCCAGCCTGGCGATGG GGAAACCAAACCATGTCCCCCAGCGAAGGGCCAGAGGTGGGAACCTGTCCTCATGCCCTTC CTGCCCTTGTCAGCTAACATACGGTGGGCCCACCTGGCCCACTGTGTTTATGCCACTG TTTTGGATTTTATCAATTTTAAAAATTGTGGAAATTTGGTTTGCTCTTACGCCAACATAATA Gaps ö 6; Length 2399; 1; Indels ΒD 87.1%; Score 2397.4; 100.0%; Pred. No. 0; Ative 0; Mismatches Query Match 87.1 Best Local Similarity 100. Matches 2398; Conservative Thu Dec 356 416 2339 2219 596 2159 2039 776 1979 836 1919 1859 926 1799 2399 1076 536 656 716 896 රු සි ර සි ර \$ \$ \$ \$ \$ \$ \$ • QY DP ර යි ර යි ර q qq Q 80 qq S 8 8 8 8 qq ð . . • مور ÷

		2			1.1				1972 (#277	y J Sina Bulanta	÷.		₹°4		
						· · ·	Cong Process	11 A.	-						
1435 1320 1495 1260	1555 1200	1615 1140 1675	1080 1735 1020	1795 960	1855 900	1915 840	1975 780	2035 720	2095 660	2155 600	2215 540	2275 480	2335 420		
CTGGTGCTTCAGCTGGGCTCCTGCAGA CTGGTGCTTCAGCTGGGCTCCTGCAGA CTGGTGCTTCAGCTGGCTGCTGCAGA TTTGCTTTCAGCTGGCCTGCCAGA TTTGCTTTCAGCTCCTTGCTGCTTGCTT TTTGCTTTCATTGCTTTGCGCCTGCTTGCTT	rcagggt rcagggt	556 TSATTOSTOSARAGACTTTAGACTOSCACGAGAGACGACACCT (CTOSCACTACCTOSCACTACCTOSCACTACCTOSCACTACCTOSCACTACCTACTACTACCACTACTACTACTACTACTACTAC	ACTGAGG TTCCTGC TTCCTGC	2992222 2002000	BACAGCC	CAGCCCC CAGCCCC	DAGCAGC	AGGCTAG	recead recead	sggrccc sggrccc	CCACTTG	NCTGTCC	GCTTGG	GCTGGG GCTGGG	TCTAAAG TCTAAAG
TGGCTC(1GGCTC(1 TTGCCG(TTGCCG(GGTCCC	CTGGCC3 CTGGCC3 CTGGCC2 TTGGGG4	TTGGGGI CTGCTCI CTGCTCI CTGCTCI	8008000	AGGATGC AGGATGC	GCCATCC GCCATCC	ggcagad ggcagad	GCTAAC2 GCTAAC2	AAGCAAT	gggccac gggccac	CGCATCC CGGATCC	GCTGGCT GCTGGCT GCTGGCT	6666CT1 3666CT1	TCCCCGT	2396 TGGAAGGTTACTGTGTTCTCTAATGTTCATGTATTAAAATGATT7CTTTCTAAG
TTCAGC TTCAGC TTCAGC TCCTTC	TGGCCA	GGCCTC GGCCTC AGTACC	AGTACC GTCCAG GTCCAG	TCAGGG TGAGGG	CATTGG CATTGG	GCTGTG GCTGTG	TCCAGO TCCAGO	601669 001669	TCCCTA 1000000000000000000000000000000000000	AGATGG AGATGG	CCAGTO CCAGTO	CACAGT CACAGT	CTTTGO CTTTGO	GCAGCC GCAGCC	AAATGA' AAATGA'
CTGGTGC CTGGTGC CTGGTGC CTGGTGC CTTGCTT	CATCCCC	Pagcaga Pagcaga Pagcaga Pagcaga Pagcaga	CCCACCT CCCATGT CCCATGT	TTGGTT TGGTT	PATCTGC	667000 667000	CTTCAC	ATAGCA	CGATCC CGATCC	GAGGTT GAGGTT	TGGTGT TGGTGT	TTTTGT TTTTGT	GAAAG GAAAG	CTCTCT CTCTCT	TATTTA TATTTA
renergescreeseageseagerts Imililililililililililililililililililil	36TCTGC 1111111111111111111111111111111111	3676666 3676666 36766660 577586660	CTCACCT CCTCTTC CCTCTTC	AGCTTGO	NTTCTGC	GTCCGA GTCCGA	TGGTGT TGGTGT	IIIII IIIII GTAGTG	ICTCACT	TAACTGO	GCTTCC GCTTCC GCTTCC	AAGTTC	76C7GG 16C7GG	666760 666760	TTCATG TTCATG
CCTTGG/ CCTTGG/ CCTTGG/ ATGCAG	SCTTTC SCCTTTC	AGCAGTC AGCAGTC AGCAGTC AGCAGTC CCTGATC	CCTGATC TGCAAGC TGCAAGC	96CCTC2	TGAGA2	AGATGO		GTAACP GTAACP	CAGCTT CAGCTT	IIIII BAAGTC	GGTTGA GGTTGA	TGGGAC	GTGCTC GTGCTC	TGTTTG TGTTTG	CTAATG
AGCCCCC AGCCCCC AGCCCCCC AGCCCCCC AGTGGG	ccreec ccreec	NCTTTG/ NCTTTG/ SGGCAGG	segerage seageer seageer	ACAGTO	TGGGCC	CACGGG		TCGTGP TCGTGP	TTTGGT TTTGGT	TTTCAG TTTCAG	GAGCCA GAGCCA	GATAGG GATAGG	CTGGGT CTGGGT	GGGGAC GGGGAC	TGTTCT TGTTCT
7166669 7166669 7166669 7161111	BGGACCC BGGACCC	NGAAGGI NGAAGGI NGAAGGI NGGGAGG	DGGGAGG	CTGCTC CTGCTC	GTATCC GTATCC	GAGTCC GAGTCC			TGCGCP	CCCAGT	леессо леессо	CTCTCA CTCTCA	TGCTGG TGCTGG	AGAGAA AGAGAA	TTACTG TTACTG
GTGTGGC GTGTGGC GTGTGGC ACCCCGC ACCCCGC		SCGTGG/ SCGTGG/ TGTCC1	TTTGGCT	AGGGG2 AGGGG2	DATAAGG	TGGAAG TGGAAG	GCTTGT GCTTGT	CAGTTC CAGTTC	GTGTTC GTGTTC GTGTTC	CACTAG CACTAG	TACTGA	CTCATG CTCATG	CCTCAT CCTCAT	CACAGA CACAGA	GCACGG GCACGG
	ccrrer ccrrer ccrrer	TGATC TGATC ACTC1	ACTCI ACCTI ACCTI ACCTI	TACAJ TACAJ		TCAAP TCAAP	CTGT0	CACTO	GCTTT GCTTT GCTTT		ACAGO ACAGO	CAGAT CAGAT	TGAGO TGAGO TGAGO	TTAAC TTAAC	TGGAA TGGAA
1376 1379 1436 1319	1496 1259	1556 1199 1616	1139 1676 1079	1736 1019	1796 959	1856 899	1916 839	1976 779	2036 719	2096 659	2156 599	2216 539	2276 479	2336 419	2396 359

2456 ATGTAACCTCCACACCTTTCTCCAGATTGGGTGACTCTTTTCTAAAGGTGGTGGTGGGGGAGTAT 2515

œ Page

J

ł

1414 TGCTTCAGCTGCTGCAGAGGTCCACCCCCCCCCTGGTGGGTG		 [[[[][[][[][[][[][][][][][][][][][][][
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	5 A 5 A 5 A 5 A 5 A 5 A 5 A 5 A 5 A 5 A
299 ATGTAACCTCACACCTTCTC10111111 219 ATGTAACCTCACACCTTCTCCAAATTG 516 CTGTCGGGGTGGTGTGGCCTTTCTCCAAATTG 239 CTGTCGGGGTGGTGTG11111111111111111111111	<pre>NK Sequence 3 from patent US 6368794. AR204690 1 G1:21502081 AR204690.1 G1:21502081 Unknown. Unknown. Unclass1 to 1853) 1 (bases 1 to 1853) 3 Daniel,S. Gilmore,J., Stuart,S.G. and Stuve,L.L. Detection of altered expression of genes regulating cell proliferation proliferation Proliferation Patent: US 6368794-A 3 09-APR-2002; Detection of altered expression of genes regulating cell proliferation Proliferation Proliferation Patent: US 6368794-A 3 09-APR-2002; Detection of altered expression of genes regulating cell proliferation Patent: US 6368794-A 3 09-APR-2002; Cce 1.01853 Anton proliferation Mol_type="unassigned DNA" (atch 63.53; Score 1747.6; DB 6; Length 1853; fatch 63.53; Pred. No. 0; S 1750; Conservative 0; Mismatches 4; Indels 0; Gs</pre>	0y994TGTTTTCCCCCCATCACAAAAAAAAATTCTTATTTTTATAGTAGACATGTATTTACCAA1053111671711111111111111111111111111111111111

Thu Dec 2 08:51:53 2004

1501 TTTCTAAAGSTGGGGGGAGTATCFGTCGGGGGGGGGGGGGGGGGGGGGGG	<pre>6 / / / / / / / / / / / / / / / / / / /</pre>
116 116 116 116 116 116 116 116 116 116	RESULT 6 PERINITION ACCESSION VERSION VERSION REFERENCE AUTHORS AUTH

<pre>led into e reads letely seful for nd allows allows clone ent that r will</pre>	gth 2th	engtn enath	ength	, t	ייי דיי דיי	uru arb	ength	ath	gth	gth	qth	ength	ength	ength	ength	ength	ength	ength	ength	ength	ength	ength	gth	gth	gth	gth	ength	ength	enqth	enath	gth J	
semb comp is u ch a ch a ch a ch a ch a ch a ch a ch a					4 -			-		Г	Ч	Ч	Ч	Ч	Ч	1	Ч	len	len		len	len	lengt	lengt	lengt	leng	len	len	lenc	. jel	lengt	
ដូចដូចដូច ទំនាំ		F - F						1.		iπ	i'n		i.	in	in	ц.	in	in	in	in	ц	in	in	in	in	in	ц,	Ë.	ц.		1 1	
a de contra br>Contra de contra d contra de contra d contra de contra de cont		da d											đq	đq	đđ	đq	đq	đq	đq	đq	đq	đq	đđ	đđ	đđ	đợ	đq	đq	đ	' <u></u>	dq	
not b to s appe be g clon ssume tion.	of 856 100 bp	" o "	, 8 r	8		, 0 u		6	ခြီမ	о С Ш	200	<u>م</u>	ວື	ຄືພິຄ	ີພິເ	ເພື່	ອື່ໃ	ວິພິ	ເພື່	ດີພິ	ຊີພິຊ	ວີພິຄ	ວິພິຊ	ព័ដ្ឋ	69	5,00	ے 8 ب	0 4 0	00 4 8 4 8	00 bj	· ~ · ·	
hat hav are us hich th s seque that m ips amo not be to comp ted, th	p ti	ap c	t o i	ap o	ap o onti		0, E	ap o onti-	n to to to	ap o onti	ap o onti	ap	ap o onti	gap of contig	ap onti	ap o onti	ap o onti	ap o onti	ap o onti	ap o onti	ap o onti	h i o Di fi o	ap onti	ap o onti	ap ont	ap o onti	ap onti	gap of contig	ap o onti	ap o onti	gap of contig	
reads der in Low-pa g clone lations t shoul is upd	ved.	1884: 1884: 2709:	80,80	70	104	6.0	6538: 7389:	8 -	1 7 12	935	028	20	201	808	700	573	683	764	859	954	9640	241 242	235	329	423 673	9 H S	505 805	515	710	904 994	n n n	
quenci ntigs. d the bitrar entify erlap wever, ul be e reco	e prese 857 857	7 C 8	812	000	in a c	0.00	1 4 10	6 6	614	9.0	018	11110	206	8 0 8 0 9 0 8 0 9 0 8 0	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	4 4 7 4 7 4 4 7 4 4 4 7 4 4 4 7 4 4 4 7 4 4 4 7 4	583	6669 679	764	859	90490	059	122	245	939 939	433	524	605 615	7100	794	686	
********	* * * *	* * *	* *	* *	* *	* *	* *	* *	* *	* *	* *	* *	* * •	* * 1	* * 1	* *	* * •	* * '	* *	* * •	* * +	* * 4	* * 4	* * *	* * '	* * +	K - K	* *	* *	* *	* *	

中来

dina.

 \mathbb{T}_{i}

11. . . M

ł

	29.8%; Score 820.6; DB 2; Length 88036; imilarity 77.9%; Pred. No. 7.7e-193; ; Conservative 0; Mismatches 238; Indels 0; Gaps 0;	rccreasaacccccacrragcrrccagaccrrrcrgcaaaagcrccrccregcrrrccrcc 486	 THNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	CTCCCCCAATCTATGGGTCACAGGTTAACAGGATCTGAGGGGCAAGTGGCTAGTGGGCCA 546	NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	GGGCTGCCACCCTGGCCACTTTAGGGCCTTCTAGGGCAGTGTCCTTA 606	36AAGTAGCTCTGAGGCATGGGTTTTCTGCTGCTGCTGGGGCAGCTGATGGGATAAGGT 666		GGGGAAGGACGGTCAGTGCTTGGGCCCAGCCTGGCCAGCCTGGCGATGGGGAAACCAAAC 726	GEGGAAGGACGETCAGTCCTTGGGCCCCGGCCTGGCCTGG	CATGFCCCCCAGCGAAGGGCCAGAGTGGGAACCTGTCCTCATGCCCTTGAGGAG 786 	CCCTGAGGTGGGCAGCAGGGGCAGGGGAAGTTTTCAGGCCTTCATCAAGAGAACAACA 846	CCTGAGTGGCAGCAGGGGCCAGGGGGAAGTTTTCAGGCCTTCATCAAGAGAAGAACAACA 72708	TCCTCAGCTCCGACCCCTCATCCTGTATCAGGACTTACCGGTGTGTGGACTGCCCTTGTC 906	AGCTAGGATACGGTGGGCCACCTGGCCCACTGGCTGTTTATGCCACTGATTTATGATAG 966	AGCTAGCATACGGTGGGCCCACCGGGCCCACTGGCTGTTTATGCCACTGATTTATGATAG 72588	GGAATATTATCTTTGAACCCAATGAAGTGTTTTCTCCCCCATCACAAAAAAAA	TATTTTAGTAGTATTTCCAAAAATATGTACTCAATTATTGTATTTTGGATTTT 1086	TATTTTAGTAGACATGTATTTTCCAAAAAATATGTACTCAATTATTATTTTTGGATTTT 72468	arcaartraaaaarrgreeaarrrertrecrertaceccaacaraararreger 1146	72	TCTTGGCTCTGAAAGCCCAAAATATTTACCGTCTAGCCCGTTACAGAAAAGTCTGCTGA 1206	тсттеестстевалассссалалтаттассетствесссеттасабалалатстестея 72348	CTACTGAGCCAGACCTCCATCCCCCTGTTGGATTATTTAAGAAAGCCTCAGA 1266	7	CAGTAAGGGCTTTTTTTAAAAGGATAAAATGACTTGGTTGG	CAGTAAGGGCTTTTTTAAAAGAATAAAATGACTTGGTTTGGGCTTGGAAGGAGGGGAAGG 72228	AGATGAGGGGTTTCTGCATTAACCCTGCCTATCACGCATCTCGGGTGGC 1386	ATTCAGATGAGGGTTTCTGAATTCCANCCCCAGGGGGGGGGG	TGGCGAGCCCCCTTGGAAGGTTCTGGTGCTTCAGCTGGCTG
* * *	Query Match Best Local Sit Matches 838;	427	73127		73067	547 73007	607		667	72887	727 72827	787	72767	847 72707	206	72647	967 72587	1027	72527	87		1147	72407	1207	47	1267	72287	27	72227	1387
	OWE	6	qa	Ъ	q	S d	δ.	ά	Q	qq	QY Db	σγ	đ	δ Δ	۵ م	đũ	Q Db	õ	đũ	σγ	đ	õ	qC	8	đũ	QY	qa	QY	q	δγ Ι

`

length	length	length	length	length	length	length	b d	enat	enot		. בווקר	engr	length	length	length	length	enot	5	length	length	length	length	length	engt	enat		eng	length	length	length	length	length	length	lencth	л IJ	length	length	length	length	
in	in	ц.	ц.	i,	i,	ц.	Ę.				1.	ц ц	ц,	in	in	i.		1.	r F	in.	Ë	in	i,	ц.	Ę.	1	F .	ц,	in	in	in	i,	i,	Ę.	1	ц.	ц.	μ	Ľ,	
ದ್ದ	đq	đq	đđ	đq	đq	đđ	្ពុំ	, d	<u>ع</u> ۱	2, 1 2, 1	à,	d G	đđ	đđ	đđ	0 q	' <u> </u>	<u>ъ</u>	đ	đđ	đđ	đq	đđ	' q	, dd		Å,	đđ	đq	đq	đq	đđ	ģ	Ę	Ъ A	đđ	đđ	đđ	đq	
100 bp of 836	100 14 18 18	00 4 8 4 9	60 683	00 4 8 4 8	60 b E 83	00 18 18	(100 g)	0 0 4	, d 00	, A , O	, a ,	ភ្នំជ័ ភ្លួល ភ្លួល	40 90 90	о 4 4 4 1 4 1 4 1 1 4 1 1	1 8 0 J	9 8 8 8	d b b	200	683 90 10	н 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	18.	00 83	90 90 92 92	00 9 4	00 b 85		о 201	т 00 b 4	т 83 00 83	1 m i 0 m i 0 m i	18 8 9 10 10	00 10 10 10 10 10 10 10 10 10 10 10 10 1	00 1 82 1 82	q q 00 4	2 20 20	т 00 82	14 1 8 0 8 1	ດ່ <u>ເ</u>	о С 4 С 44	
ap ont	ap o	ap o onti	ap o onti	ap o onti	ap o onti	ap o onti	ap o onti	DA C	ap o	ap o		ap o ap	onti	onti	ap o onti	ap o onti	ap o onti	apoi	onti ap o	onti	onti	ap o onti	ap o onti	ap o onti	ap o onti	ap o	onti ap o	onti ap o	onti an o	onti	ar onti	ap o onti	ap o onti		apor	onti an o	onti	ap onti	ap onti	a D O
29947: 30783:	088	182	277 361	371 455	465 548	558 640	650	82	836	100	0266	122	2077	3026	401	411	504	869	681 691	772	863	957	967	062	157242	252	2 4 5 7 4 5 7 6	433 443	527	555	714	724 807	817 900	010	100	083		010	1 0 0 1 0 1	8/8
29848 29948	078	173 183	267	361	456 466	549	640 650	731	826	921	110	112	122	212	312	407	494 504	588	598 681	691	782	873	957 967	052	147	242	3392	349 433	443	537	631	714 724	808 818	900	1991	001084	460	188	283	368
* *	* *	* *	* *	* *	* *	* *	* *	* *	* *	* *	: 4: 4 ,	* *	* *	* 1	¢ +¥	* *	* *	*	* *	* *	*	k +k ∶	* *	* *	* *	* *	* *	* *	* *	* 1	*	* *	* *	* *	*	* *	* *	• • •	* * •	ĸ

. Thu Dec 2 08:51:53 2004

us-09-989-920-100.rge

Page 12

1784: contig 1884: gan di 2709: contig 2809: gap of 3605: contig 3705: contig 4555: contig	74655 74655 74656 74655 74338 74389 74289 74165 74165 74165 74165 74165 74105 74165 741000000000000000000000000000000000000	00 bp - 56 850 bp in 1 56 823 bp in 1 56 823 bp in 1 56 823 bp in 1 56 812 bp in 1 10 0 bp in 1 6 811 bp in 1	17740: gap of 100 bp 18691: contig of 851 18691: contig of 851 19541: contig of 850 19541: gap of 100 bp 20489: contig of 848 20589: gap of 100 bp 21422: contig of 833 21522: gap of 100 bp 23557: contig of 835 23557: contig of 835 23592: contig of 835 23292: contig of 935 23292: co	24230: gap of 100 bp 24230: contig of 80 bp in 24330: gap of 100 bp 25143: contig of 813 bp in 25243: gap of 100 bp pn 26055: gap of 100 bp 26155: gap of 100 bp 27100: gap of 100 bp 27947: contig of 845 bp in 27947: contig of 847 bp in 28996: contig of 849 bp in 28996: gap of 100 bp	29647: Contig 20947: Contig 20947: Gap of 30883: gap of 311229: contig 31829: gap of 32675: gap of 32675: gap of 32714: gap of 337144: contig 337144: contig 34559: contig 34559: contig 34559: contig
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	linear HTG 01-FEB-2003 62K6 map 17, LOW-PASS Vertebrata; Euteleostomi; ; Hominidae; Homo.	Oepel,Y., aro,S., S., .C.,	,M., laylor,J., Rogov,P., Smith,C., Su,Wu,X., Zody,M.	1, USA .html Genome Research edu	* * * * * * * * * * * * * * *
pb 72167 NINNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	RESULT 7 AC139359 AC139359 AC139359 AC139359 AC139359 AC139359 LOCUS B0036 bp DNA LOCUS AC139359 AC139359 AC139359 AC139359 ACCESSION AC139359 ACCESSION AC139359 ACCESSION AC139355 ACCESSION ACCESION ACCESION ACCESION ACCESION ACCESION ACCESION ACCESION AC	<pre>Birren.B., Vusbaum,C. and Lande Birren.B., Nusbaum,C. and Lande Homo sapiens chromosome 17, clc Unpublished 2 (bases 1 to 88036) Birren.B., Nusbaum,C., Lander,E Anderson,S., Arachchi,H.M., Bar Boguslavkiy,L., Boukhgalter,B., Boguslavkiy,L., Boukhgalter,B., Collymore,A., Cook,A., Cooke,P. Collymore,A., Cook,A., Cooke,P. Diaz,J.S., Dodes,S., booley,K., Gag Graham,L., Grand-Pierre,N., Hall, Hall,J., Horton,L., Hulme,W., I Kamat,A., Karatas,A., Kells,C., Kamat,A., Karatas,A., Kells,C., Lindblad,A., Karatas,A., Kells,C., Lindblad,A., Karatas,A., Lui,A., Lui,A., Lindblad, C., Lui,A., Lui,S., Lui,A., Lindblad, Lui,A., Lui,S., Lui,A., Lui,A., Lindblad, Lui,A., Lui,S., Lui,A., Lindblad, Lui,A., Lui,S., Lui,A., Lindblad, Lui,A., Lui,S., Lui,S., Lui,A., Lindblad, Lui,A., Lui,A., Lui,A., Lui,A., Lindblad, Lui,A., Karatas,A., Karatas,A., Lui,A., /pre>	<pre>Macdonald,P., Major,J., Manning,J., Mati Weldrim,J., Meneus,L., Mihova, T., Mleng Nguyen,C., Nicol,R., Norbu,C., O'Connor, O'Neil,D., Ollver,J., Peterson,K., Phuni Rachupka,A., Ramasamy,U., Raymond,C., Re Roman,J., Schauer,S., Schupback,R., Sear Spencer,B., Stange-Thomann,N., Stojanovi Talamas,J., Tesfaye,S., Theodore,J., Toy Vassillev,H., Venkataraman,V.S., Viel,R Wyman,D., Yonng,G., Zainoun,J., Zembek,I DURNAL Submitsion Instit JOURNAL Submitted (01-FEB-2003) Whitehead Instit</pre>	0 0 1 2 4 6 5	 NOTE: This record contains 94 individual sequencing reads that have not been assembled into contigs. Runs of M are used to separate the reads and the order in which they appear is completely arbitrary. Low-pass sequence sampling is useful for identifying clones that may be gene-rich and allows coverlap relationships among clones to be deduced. However, it should not be assumed that this clone will be sequenced to completion. In the event that the record is updated, the accession number will be preserved. 856: contig of 856 bp in length

1

v

2

QY 921 GGGCCCACCTGGCCCACTGGCTTATGCCACTGATTATGATAGGGAATATTATCTTT 980 Db 82618 GGGCCCACCGGGCCCACTGGCTGTTATGCATAGGGAATATTATCTTT 980 QY 981 [Qy 1101 TGTGGAAATTTGTTTGCTCTTAGGCCAACATAATTTGATTTGGCTCTGAAA 1160 Db 82798 [Qy 1281 Tranangarpanangartnggertnggertnggargeggargegargegargegg 1340 Db 82978 [Db B3158 GAIdaGCUTTIGCTTUTIGCTUTTIGCGCCCCTGGTTCTTGGGGACCGCGGGGCC B3217 Qy 1521 TTTGGTCTGCATCCCCTGGCGCGGGGGTGGGGGGGGGGG	RESULT 6 AX535072 AX535072 960 bp DNA linear PAT 22-NOV-2002 LOCUS Sequence 99 from Patent W002068633. ACCESSION AX535072.1 G1:25261751 ACCESSION AX535072.1 G1:25261751 ACCENTIME Compositions (human) ACCESSION AX535072.1 G1:25261751 ACCESSION AX53751751 ACCESSION AX53751751 ACCESSION AX53751751 ACCESSION AX53751751 ACCESSION AX53751751 ACCESSION AX53751751 ACCESSION AX53751751 ACCESSION AX551751 ACCESSION AX551751 ACC
35589: gap of 100 bp 36508: contig of 100 bp 36508: gap of 100 bp 37315: contig of 807 bp in 1 37415: gap of 100 bp 37415: gap of 100 bp 38362: contig of 851 bp in 1 38362: contig of 851 bp in 1 39213: gap of 100 bp 40166: contig of 853 bp in 1 40266: gap of 100 bp	41123: contig of 857 bp in leng 41223: gap of 100 bp 42077: contig of 854 bp in leng 42177: gap of 100 bp 43126: contig of 849 bp in leng 43126: gap of 100 bp 44011: contig of 849 bp in leng 44111: gap of 100 bp 44943: contig of 832 bp in leng 45881: contig of 838 bp in leng 45881: contig of 838 bp in leng 45881: gap of 100 bp	46811: contig of 830 bp in leng 467311: gar of 100 bp 47727: contig of 100 bp 47727: gar of 100 bp 48636: contig of 809 bp in leng 48736: gar of 100 bp 49571: contig of 835 bp in leng 49571: contig of 835 bp in leng 50521: contig of 850 bp in leng 50521: gar of 100 bp 50521: gar of 100 bp 51478: contig of 850 bp in leng 51478: contig of 850 bp in leng 51478: contig of 850 bp in leng 51578: gar of 100 bp 51578: gar of 100 bp 51578: contig of 850 bp in leng 52528: gar of 100 bp	<pre>52329 53390: contry of 84 bp in length 53391 53490: gap cf 100 bp 53491 54335 54434: gap cf 100 bp 54335 54434: gap cf 100 bp 55274 55373: gap cf 100 bp 55274 55373: gap cf 100 bp 55274 55370: contry of 837 bp in length 55210: contry of 837 bp in length 55211 57148: contry of 837 bp in length 57249 57248: gap cf 100 bp 57249 59074: contry of 831 bp in length 580105 59104: gap cf 100 bp 59014: contry of 832 bp in length 59015 59104: gap cf 100 bp 50010: contry of 825 bp in length 50010: contry of 825 bp in length 59014: contry of 825 bp in length 50010: contry of 825 bp in length</pre>	60030; Cartig of 60939; Cartig of 61284: contig of 61284: contig of 61285: contig of 62835: contig of 63285: cap of 10 63285: contig of 64528: contig of 64528: contig of 64528: contig of 64728: gap of 10 65571: contig of 64728: gap of 10 65571: contig of 64728: contig of 74728:

Page 14

Thu Dec 2 08:51:53 2004

us-09-989-920-100.rge

1717 1777 1837 1897 2017 2077 2196 ŝ 1957 2137 CCAGTCCGGAT-CCCACTTGCAGATCTCATGCTCTCAGATAGGTGGGGACAAGTTCTTTTG 2255 280 340 400 460 520 580 PAT 30-JAN-2004 160 220 640 41 GTACCTTGGGGGACTGAGGACCTTTTGGCTTCTCTGGAGCCTGCAGCCTCCTTCCCATGTG 100 Homo sariens Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo. Schlegel,R., Endege,W.O. and Monahan,J.E. Genes differentially expressed in human prostate cancer and their 1778 GAGGGGCCGCCCCGGGCCCTCCATAAGGGTATCCTGGGCCTGAGAATTCTGCATCTGCC 281 CTGTGGCCATCCAGCCCCTGTGGCTTGTCCAGCCTCTGTGCACCCTGGTGTGTCTTCACT CCAGGGGCAGACCAGCCACTGCAGTTCCTTTCTTCGTGAGTAACAGTAGTAGTAGCAG 521 GATGGGGGCCAGGGTCCCACATGCTGCTGATGCCCGAGCCAGGTTGAGCTTCCTGGTGT 581 CCAGTCCGGATCCCCACTTGCAGATCTCATGCTCTCAGATAGGTGGGACAAGTTCTTTG GTACCTTGGGGACTGAGGACCTTTTGGCTTCTCTGGAGCCTGCAGGCTCTTCCCATGTG TCCA6CT6CTCTTCCT6CTACAAAGGGGGACTGCTCACAGTGGCCTCAGCTTGGTGGTTTTT rccagcrgcrtcrtccrgcrazaaggggacrgcrcacagrggccrcagcrtggrgrrrr 161 GAGGGGCCCCCCCGGGCCCTCCATAAGGGTATCCTGGGCCTGAGAATTCTCCCATCTGCC 1838 ATTGGAGGATGGACAGCCTCAAATGGAAGGAGTCCCACGGGAGATGGGTCCGGGTCCGG 221 ATTGGAGGATGGACAGCCTCAAATGGAAGGAGTCCCACGGGAGATGGGTCCGGG CTGTGGCCATCCAGCCCCTGTGGCTTGTCCAGCCTCTGTGCACCCCTGGTGTCTTCACT CCAGGGGCAGCAGCAGCAGCTGCAGTTCCTTCCTTCGTGAGTAACAGTAGTGATAGCAG CCCTAAAGCAATGGGGGGGGCCCCCCCTAGCCCCAGTTTCCAGGAAGTCAACTGGGAGGTTA 461 CCCTAAAGCAATGGGGAGGCCCCCACTAGCCCCAGTTTTCAGGAAGTCAACTGGGGAGGTTA 2138 GATGGGGGCCAGGGTCCCACA-GCTACTGATGGCCCGAGCCAGGTTGAGCTTCCTGGTGT Gaps TCACAGTGCTGG - CTCTGTCCTGAGGCCTCATTGCTGGCTGGGTGCTC 2304 ŝ Score 612.4; DB 6; Length 960; Pred. No. 4e-141; 0; Mismatches 1; Indels 3 linear Patent: W0 0160860-A 54549 23-AUG-2001; Millennium Predictive Medicine, Inc. (US) Location/Qualifiers DNA CQ522682 611 bp DN Sequence 54549 from Patent WO0160860. CQ522682 /mol_type="unassigned DNA" /db_xref="taxon:9606" /organism="Homo sapiens" CQ522682.1 GI:41488946 Query Match 22.2%; Best Local Similarity 99.4%; Matches 646; Conservative C Homo sapiens (human) 5 use 1658 1718 101 1958 341 2078 1898 641 2197 2256 RESULT 9 CO522682 LOCUS source ORGANISM ACCESSION VERSION KEYWORDS SOURCE REFERENCE MUTHORS JOURNAL ", FEATURES TITLE ORIGIN ିର ଶି<u>ଁ</u>ର୍ବୁ . ∻ qq 8 8 δ₀ qq qq _8_.∕\$ පි රි දේ କୁ 8 9 δ q δ δ ____

ž ĥ 1253 1254 AGAAAGCCTCAGACAGTAAGGGC-TTTTTTAAAAGAATAAAATGACTTGGCTTTGCGCTTG 1312 1432 1492 1313 GAAGCAGGGGAAGCATTCAGATGAGCGGTTTCTGCATTAACCCTGCCTATCACGCATCTC 1372 CTTCCTGTTCCTGGGGGACCCGCTGGGGCCTTTGGTCTGCATCCCCTGGGCCAGGTCCCTCAG 1552 GGTTGATGCGTGGAGAAGGACTTTGAGCAGTGGTGGGCAGCAGCAGCTGGCCTGGCCAGCT 1612 CACACTCTTGTCCTGGGAGGGGGGGGGCCTGATCTCCACCTCGCCTAGTACCTTGGGGACTG 1672 1673 AGGACCTTTTTGGCTTCTTCGCAGCCTGCAAGCCTCTTCCCATGTGTCCCAGCTGCTGTTCC 1732 PAT 2.6-0CT-2001 403 williams.L.T., Escobedo,J., Innis,M.A., Garcia,P.D., Sudduth-Kiinger,J., Reinhard,C., He,Z., Randazzo,F., Kennedy,G.C., Sudduth-Kissam,A., Lamson,G., Dranac,R., Crkvenjakov,R., Dickson,M., Dranac,S., Labat,L., Leshkowitz,D., Kita,D., Garcia,V., Jones,L.W. and Stache-Crain,B. Patent: W0 0172781-A 176 04-0CT-2001; Chiron Corporation (US) Location/Qualifiers 44 AAAAGTCTGCTGACTACTCAGCCAGACCTCCATTACCTCCATCCTGTTGGATTATTTAA 103 163 223 283 343 464 CACACTCTTGTCCTG0GGGGGGGGGGGCAGCTGATCTCACCTCGCCTGGGGACTG 523 583 Euteleostomi; 1194 AAAAGTCTGCTGACTACTGAGCCAGACCTCCATTACCTCCATCCTGTTGGATTATTTAA 104 AGAAAGCCTCAGACAGTAAGGGCTTTTTTTTAAAAGAATAAAATGACTTGGCTTG 1433 AGAGTCCACCCCGCCTCGTGGTGGGAATGCAGAGCCCTTTGCTTTCCTTGTTGCCGCCTG 14 CTTCCTGTTCCTGGGGGACCCCCTGGGCCTTTGGTCTGCCTGGCCTGGCCAGGTCCCCTGG 164 GAAGGGGGAAGCATTCAGATGAGGGGTTTCTGCATTAACCCTGCCTATCAGGCATCTC GTGTCCTGTGTGGCGAGCCCCCCTTGGAAGGTTCTGGTGCTTCAGCTGGCTCCTGC 524 AGGACCTTTTGGCTTCTCTGGAGCCTGCAAGCCTCTTCCCATGTGTNCAGCTGCTGCTCC Gaps Bukaryota, Metazoa; Chordata; Craniata; Vertebrata; Butelt Mammalia; Butheria; Primates; Catarrhini; Hominidae; Homo. 1; Length 611; 2; Indels linear Score 554; DB 6; 1 Pred. No. 1.4e-126; 0; Mismatches 2; DNA /mol_type="unassigned DNA" /db_xref="taxon:9606" TGCTACAAAGGGGGACTGCTCACAGTGGC 1760 /organism="Homo sapiens" /mol_type="unassigned DNA" /db_xref="taxon:9606" 611 584 TGCTACAAAGGGGGACTGCTCACAGTGGC AX262096.1 GI:16511048 20.1%; 99.5%; Homo sapiens (human) Query Match 20.1 Best Local Similarity 99.5 Matches 565, Conservative 395 Homo sapiens 1373 1613 1493 1553 1733 DEFINITION ACCESSION VERSION KEYWORDS SOURCE ORGANISM source RESULT 10 AX262096 LOCUS REFERENCE AUTHORS JOURNAL FEATURES ORIGIN å δ qq PP DP δ δ g 8 qq 8 q \mathcal{S} qq đ 90 3 20 3 g δ

Ju Dec 2 08:51:53 2004

us-09-989-920-100.rge

AmpliTaq Gold Folymerase: 0.07 units/ul Total Vol: 5 ul Buffer: 50 mM MgCl2: 2.5 mM XCl: 50 mM XCl: 50 mM XCl: 50 mM Tris-HCl: 10 mM PH: 8.3 Prepared with primer pairs derived from W86076 Unigene. Prepared with primer pairs derived from W86076 Unigene. Prise action/Qualifiers 1406 Admark from capiens" Admark fraction/Qualifiers 1406 Admark fraction/Qualifiers 1400 Admark fraction/Qua	Query Match9.5%Score 261.2DB 11Length 406Best Local Similarity89.2%Fred. No. 1.1e-53Matches 31Indels 9Gaps 6Matches 347Conservative 0Mismatches 31Indels 9Gaps 6Cov630TTTCTCGTCTCTGTGCGGGCGGGCGGGGGGGGGGGGGG	RESULT 12 AX535063/c LOCUS LOCUS DEFINITION Sequence 90 from Patent W002068633. DEFINITION SCESSION VERSION X5355063.1 GI:25261733 X62TWORDS X5355063.1 GI:25261733 X62TWORDS X5355063.1 GI:25261733 X62TWORDS X5355063.1 GI:25261733 X62TWORDS X5355063.1 GI:25261733 X62TWORDS X5355063.1 GI:25261733 X62TWARDS X632000 AX535063.1 GI:25261733 X62TWARDS X632000 AX535063.1 GI:25261733 X6370700 Saptens (human) X535063.1 GI:25261733 X6370713 X6370700 Saptens (human) X6370703 X637070 X77070 X770700 X77070 X77070 X77070 X770700 X770700 X770700 X770700 X770700 X770700 X770700 X770700 X770700 X770700 X770700 X7707000 X77000000 X7707000 X77070000 X770700000000
ORIGINQuery Match13.0%; Score 357.4; DB 6; Length 395;Duery Match13.0%; Score 357.4; DB 6; Length 395;Best Local Similarity96.9%; Pred. No. 1.2e-77;Matches375; Conservative0; MismatchesQy1216CanacorcarractoractorandaraQy1216C-THTTTPAAGAATGATTATTTPAAGAAAGACTAGACAGTAAGGGQy1276C-THTTTPAAGAATGAATGACTGGATTATTTAAAGAAAGACTAGAGATAAGGGQy1276C-THTTTPAAGAATGAATGACTGGATTATTTAAAGAAAGACTAGAGATAAGGGQy1276C-THTTTPAAGAATGAATGACTGGATTATTTAAAGAAGCACAGAAGAAGAGAGGGGGGAAGGAA	Qy1455GGGAAATGCAGAGCCCTTTGCTTTCTTTGCCGCCTCTTTGCGGGGGACCCGC1511Db249GGGAATGCAGAGCCCTTTGCTTTCCTTTGCTGCCTGGTGGGGGACCGGC308Qy1515TGGGCCTTTGGTCTGCCTGGCCAGGGTCGATGGGGGTGAAGGAGCCGGG309TGGGCCTTTGGTCTGCATCGCCTGGCCAGGGTCGATGGGCTGATGGGGCTGAAGGAGCCGGG309TGGGCCTTTGGTCGGCCAGGCCCTGGGGGTGATGGGCTGATGGGGCTGAAGGAGCCGGGQy1575TTCAAGCAGTGGCAGGCAGGGCGCGGCCAGGGCCAGGGCTGATGGGGCTGAAGGAGCT369Qy1575TTCAAGCAGTGGCAGGCAGGGCGGCCAGGGCCCCCCAGGGCTGATGGGGCGGGGGGGG	Stanford University School of Medicine Department of Genetics, M-344, Stanford, CA 94305, USA Tel: 415729689 Email: myers@shgc.stanford.edu Primer A: AGGTGAAGGCAGTCACA Primer B: GGGGAAGTTTTCAGGCATTCAC STS size: 102 PCR Profile: Thitial incubation: 95 degrees C for 10 minutes PCR Profile: PCR Profile: Denaturation: 94 degrees C for 30 seconds Annealing: 60 degrees C for 30 seconds PCR Vorles: PCR Vorles: PCR Cyrer: Perkin Elmer 9700 Protocol:

2 08:51:53 2004 Thu Dec

us-09-989-920-100.rge

Page 16

3

okigin Okigin Okigin Best Local Best Local Best Local Db 238 Oy 238 Oy 256 Oy 256 Oy 256 Db 13 Coression Nbb 13 Coression Nbb 13 Coression Nbb 13 Coression Nbb 13 Coression Nbb 25 Coression Nbb 13 Coression Nbb 13 Coression Nbb 25 Coression Nbb 13 Coression Nbb 25 Coression Nbb 25 Coression Nbb 13 Coression Nbb 25 Coression Nbb

b Direct Submission Direct Submission of Molecular and Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA On Nov 20, 2002 this sequence version replaced gi:23269326. The sequence in this assembly is a combination of BAC based reads and whole genome shotgun sequencing reads assembled using Atlas in the feature table below represents a scaffold in the Atlas assembly (a 'contrig-scaffold'). Within each contrig-caffold' individual sequence contigs are ordered and oriented, and separated by sized gaps filled with Ns to the estimated size. The sequence may extend beyond the ends of the clone and there may be sequence contig scaffold in the feature by sized gaps filled with Ns to the estimated size. The sequence contig scaffold that consist entirely of whole genome shotgun sequence rands of the clone and there may be sequence optim sequence contigs will be indicated in the feature denome shotgun sequence will be indicated in the feature denome shotgun sequence only contigs will be indicated in the feature denome shotgun sequence only contigs will be indicated in the feature denome shotgun sequence only contigs will be indicated in the feature denome shotgun sequence only contigs will be indicated in the feature denome shotgun sequence only contigs will be indicated in the feature denome shotgun sequence only contigs will be indicated in the feature denome shotgun sequence only contigs will be indicated in the feature denome shotgun sequence only contigs will be indicated in the feature denome shotgun sequence only contigs will be indicated in the feature denome shotgun sequence only contigs will be indicated in the feature denome shotgun sequence only contigs will be indicated in the feature of the seture of th Pasternak,S., Paul,H., Perez,A., Perez,L., Pfamnkoch,C., Plopper,F., Poindexter,A., Popovic,D., Primus,E., Pu,L.-L. Puazo,M., Quiroz,J., Rachlin,E., Reves,K., Regier,M.A., Reigh,R., Reilly,B., Reilly,M., Ren,T., Reuter,M., Richards,S., Riggs,F., Rives,C., Rodkey,T., Rojas,A., Rous,M., Rose,M., Richards,S., Shen,H., Sanders,W., Savery'G., Scherer,S., Scott,G., Shataman,S., Shen,H., ShettyJ., Shvartsbyn,A., Sisson,I., Sitter,C.D., Smajs,D., ShettyJ., Shvartsbyn,A., Sisson,I., Sitter,C.D., Smajs,D., Shetth,M., Strong,R., Sutton,A., Svatek,A., Tabor,P., Taylor,C., Taylor,T., Thomas,N., Thomas,S., Tingey,A., Trejos,Z., UsanaI,K., Valas,R., Vera,V., Villasana,D., Waideon,L., Walke,F., Williams,G., Waiten,R., Wei,K., Wooden,H., Worley,K., Wright,D., Wright,R., Wu,J., Zakub,S., Yen,J., Yoon,L., Yoon,V., Nieferhausern,A., Muss,R., Smith,D.R., Niete,F., Nieferhausern,A., Sheis,R., Smith,D.R., Nies,R., Shun,D., Von Nieferhausern,A., Waiss,R., Smith,D.R., Niete,F., Nieferhausern,A., Sheis,R.A., Neinstrok,G., and Gibbs,R.A. data.html). Direct Submission Submitted (23-SEP-2002) Human Genome Sequencing Center, Department Submitted (23-SEP-2002) Human Genome Sequencing Center, Department Baylor Plaza, Hueston, TX 77030, USA 3 (bases 1 to 190379) Rat Genome Sequencing Consortium. Quality coverage: 5x in Q20 bases; sum-of-contigs estimation NOTE: Estimated insert size may differ from sequence length
(see http://www.hgsc.bcm.tmc.edu/docs/genbank_draft_data.h
NOTE: This is a 'working draft' sequence. It currently
consists of 2 contigs. The true order of the places
is not known and their order in this sequence record is Assembly program: Phrap; version 0.990329 Assembly program: Phrap; version 0.990329 Consensus quality: 168342 bases at least 240 Consensus quality: 171971 bases at least 230 Consensus quality: 174193 bases at least 230 Estimated insert size: 172482; sum-of-contigs estimation Center: Baylor College of Medicine Center: Baylor College of Medicine Center code: Bhtp://www.hgsc.bom.tmc.edu/ Web site: hgsc-help@bom.tmc.edu Project Information Center project name: KCCX Center clone name: CH230-298J1 2 (bases 1 to 190379) Rat Genome Sequencing Consortium. Direct Submission Unpublished table. TITLE JOURNAL REFERENCE REFERENCE AUTHORS TITLE JOURNAL TITLE JOURNAL AUTHORS

COMMENT

arbitrary. Gaps between the contigs are represented as runs of N, but the exact sizes of the gaps are unknown. This record will be updated with the finished sequence as soon as it is available and the accession number will as soon as I

14191: contig of 14191 bp in length 14291: gap of unknown length 190379: contig of 176088 bp in length. 14192 14292 REFERENCE AUTHORS

FEATURES Location/Qualifiers 1. 190379 source / organism="Rattus norvegicus" /mol_types="genomic DNA" /db_tref="taxon:10116"	 N
sc_featur sc_featur	
misc_feature 1271214191 /note="wgs_contig" misc_feature 113270115130	
_ sc_feature	
site: end_sequence:BZ129373" misc_feature 18633188023 /note="wgs_end_extension misc_feature 189275_19379	
_ /note="wgs_end_extension clone_end:Sp6" ORIGIN	
Query Match 3.2%; Score 87.6; DB 2; Length 190379; Best Local Similarity 65.6%; Pred. No. 2.99-10; Matches 269; Conservative 0; Mismatches 99; Indels 42; Gaps 8;	
Qy 2304 CTGCTGGGAAAAGCTTTGCGGGGGCTTGCTTGGTTAACCACAGAAGGAGAAGGGACTGTT 2363 Db 5492 CTGCTGGGGAAGAGCTTAGTGGGGGCTAGTATCAGAGAAGGAAGGAACTGTT 5438	
Qy 2364 GGGGTGCTCTCTGCAGCCTCCCCGTGCTGGGTGGGAGCACGGTTACTGTGTTCTTAAT 2423 Db 5437 CATGCACTGACTTATCTCTTCCTGCTGGGGTAAAGGCTTGGTTACTTTCTTAT 2381	
ATGTAACCTCCACACCTTTCTCCAGATT 248	
5380 GCTTCGAAGTGATTCCTGAGGTTTTCTCACACCTACCTTCTTCTTCCTGGGG 532	
QY 218 030716171717171040101616161616161616161616161616161616	
QY 2544 GTCAGGTGGGGTGAGGCTCCTGGGGGGGGGGGGGGGTGGGGGTTCAAGTTGTCTG 2602 DD 111 1111 1111 1111 1111 DD 5276 GTCAAATGTGTGTAGCGGGTCATGGGGGGGGCCATGGAAACCCAAGTTGTCATAATG 5217	
QY 2603 CCATGTTTTGTACCTGAAATAAAGCATATTTTGCACTTGTTACTGTGCGGA 2662 Db 1	
Qy 2663 CGAGAAGTCTGTATGTGGGATTCGGGTTAGAATGGAATAAAAC 2712 0 1	
RESULT 14 AC136817 LOCUS AC136817 231580 bp DNA linear HTG 23-NOV-2002 DEFINITION Ratus norvegicus clone CH230-43B4, *** SEQUENCING IN PROGRESS ***, DEFINITION Ratus norvegicus clone CH230-43B4, *** SEQUENCING IN PROGRESS ***, ACCESSION AC136817 2 G1:25188334 VERSION AC136817.2 G1:25188334 ATG; HTG; HTGS_PRAFT; HTGS_ENRICHED. Ratus norvegicus (Norway rat) SOURCE Ratus norvegicus (Norway rat) Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Ratus norvegicus (Nordata; Craniata; Vertebrata; Euteleostomi; Ratus norvegicus Ratus Rodentia; Sciurognathi; Muridae; Murinae; Ratus Norda; Ratus Nodentia; Sciurognathi; Muridae; Murinae;	

1 these it to 23150. 1 these it to 23150. 1 the it the it the iteration of the itera

TITLE JOURNAL REFERENCE AUTHORS TITLE JOURNAL REFERENCE AUTHORS TITLE JOURNAL

TNEMMOD

Thu Dec 2 08:51:53 2004

¥ -

us-09-989-920-100.rge

Page 18

0Y 2424 GTTCATGTATTTAAAATGATTTCTTTCTAAGGTGTAACCTCCACACTTTCTCCCGGATT 2483 0P 225408 GCTTCGAGTTATTAAAATGATTTCTCAGGTTTCTCACACCTTTCTTCCCGGATT 2483 0P 225408 GCTTCGAGTTATTTCTAAAGGTGGTGGGTGGTTGGTCGCCTTGCTCCGGGTG 225459 0P 225460 GGCTGATTTTTCTAAAGGTGGTGGGGGGGGGGGGGGGGG	225616 TGAGAAATCTGTATGTGGGGCCTCTGTGC-TGGGTCAGATGCAATAAAAC 225 SULT 15 225616 TGAGAAATCTGTATGTGGGGCCTCTGCC-TGGGTCAGAATGCAATAAAAC 225 S01DT7 CUS CUS CUS CNS01DT7 FINITION Human chromosome 14 0f Homo sapiens (Human), complete seg AL132642.4 G1:14041778 AL132642.4 G1:14041778 AL120642.4 G1:14041778 AL120642.4 G1:14041778 AL120642.4 G1:14041778 AL120642.4 G1:14041778 AL120642.4 G1:14041778 AL120642.4 G1:140641778 AL120642.4 G1:14041778 AL120642.4 G1:1404178 AL120642.4 G1:1404178 AL120642.4 G1:1404178 AL120642.4 G1:1404178 AL120642.4 G1:1404178 AL120642.4 G1:1404178 AL120642.4 G1:1404178 AL120642.4 G1:1404178 AL120642.4 G1:1404178 AL120642.4 AL120642.4 AL120642.4 AL12064444 AL120642.4 AL1206444478 AL1206444474744747478 AL120644447474747474747474747474747474747474	<pre>JUTLE Sequencing of the numan chromosome re JOURNAL Sequencing of the numan chromosome re AUTHOR Direct Submission TITTLE Direct Submission TITTLE Direct Submission FBP 191 91006 EVEX cedex - FRANCE (E-mail : seqref@genoscope.cns.fr Genoscope.cns.fr) TITTLE Direct Submission DOURNAL Submission FBP 191 91006 EVEX cedex - FRANCE (E-mail : seqref@genoscope.cns.fr - Web : www.genoscope.cns.fr) Conversion To May 15, 2001 this sequence version replaced gi:8217878. - Web : www.genoscope.cns.fr Conversion Contact: Sequef@genoscope.cns.fr Contact: Sequef@geno</pre>
contigs within a contig-scaffold that consist entirely of whole genome shorgun sequence reads. Both end sequences and whole genome shorgun sequence only contigs will be indicated in the feature shorgun sequence only contigs will be indicated in the feature table. 	<pre>public control of a control of a control of cont control of control of control of control of control of c</pre>	<pre>misc_feature 1.1287 misc_feature 1.000e_endi5p6" misc_feature 1.1287 clone_endi5p6" misc_feature 13382653 misc_feature 13382653 misc_feature 13382653 misc_feature 13369156 misc_feature 13375.9 misc_feature 13375. misc_feature 140. misc_feature 140. misc_featu</pre>

з 6767 датбаататттсттттбтттбатбатбабадсаттатстттаадссасааттаббсаааа 36826 36827 тестатсссатадададаттссаттттстсаттастадасстататадататт 36886 36887 GTACTTAGTTATTATGTTTTAAATTTCATCAACAA-TAATAATTTATGGAAATTTGTTCTGTC 36945 37006 ATACTTACTACTTGCTCCCCCTCGCAGAACTAGTACTCGCGCACTCCTCCTCTTTTGATCGCA 37065 1000 CTCCCCCATCACAAAAAAAATTCCTTATTTTTAGTAGACATGTATTTTACCAAAAAATAT 1059 1120 TTA--------CGCCAACATAATATTTGATTTTGCCTCTTGGCTCTGAAAGCCCCAAA 1167 1168 ATATTTACCGTCTAGCCCGTTACAGAAAAGTCTGCTGGTACTACTGAGCCAGACCTCCATT 1227 1228 ACCTCCATCCCTGTTGGATTATTTAAAGAAAGCCTCAGACAGTAAGGGCCTTTTTTAAAAG 1287 2 940 GCTGTTTATGCCACTGATTTATGATAGGGAATATTATCTTTGAACCCAATGAAGTGTTTT 999 Query Match 2.9%; Score 81; DB 9; Length 182643; Best Local Similarity 54.5%; Pred. No. 1.3e-08; Matches 213; Conservative 0; Mismatches 165; Indels 13; Gaps Identified using the e-PCR software (G. Schuler)" 157650. 157856 /note="matching EMBL:T03336 RHdD:rH53909 dbSTS:STS67159 dbSTS:STS67159 167011: 1670886 /note="matching EMBL:AA195225 FHdb:RF65774 dbSTS:STS45705 dbSTS:STS45705 dbSTS:STS45705 dbSTS:STS45705 dbSTS:STS45705 dbSTS:STS45705 dbSTS:STS45705 dbSTS:STS454705 dbSTS:STS444705 dbSTS:STS454705 dbSTS+205 Identified using the e-PCR software (G. Schuler)" Percentage of bases with a quality value >= 40 : 99 %. /organism="Homo sapiens" /db_trefs="texon:9606" /db_trefs="texon:9606" /chromosome="14" /clone="14" /clone="1 37126 CTGGAAAGGCCCTCGGAGGTCTTCTAAACCA 37156 162845. .162997 /note="matching EMBL:AA610019 RHdb:RH94166 1288 AATAAAATGACTTGGTTTGCGCTTGGAAGCA 1318 Search completed: November 29, 2004, 11:55:34 Job time : 11599 secs ocation/Qualifiers 1. .182643 80 - 89 : 59044 90 - 99 : 101315 source STS STS STS STS FEATURES ORIGIN qq q \mathcal{S} q δ qq \mathcal{S} g δ Q0 \mathcal{S} q 8 \mathcal{S}

transformation and the second s

. toggafaata

- - <u>-</u>